Spaces:
Running
Running
import gradio as gr | |
from phi.agent import Agent | |
from phi.model.groq import Groq | |
import os | |
import logging | |
from sentence_transformers import CrossEncoder | |
from backend.semantic_search import table, retriever | |
import numpy as np | |
from time import perf_counter | |
import requests | |
from jinja2 import Environment, FileSystemLoader | |
from pathlib import Path | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# API Key setup | |
api_key = os.getenv("GROQ_API_KEY") | |
if not api_key: | |
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.") | |
logger.error("GROQ_API_KEY not found.") | |
api_key = "" # Fallback to empty string, but this will fail without a key | |
else: | |
os.environ["GROQ_API_KEY"] = api_key | |
# Bhashini API setup | |
bhashini_api_key = os.getenv("API_KEY", "").strip() | |
bhashini_user_id = os.getenv("USER_ID", "").strip() | |
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: | |
"""Translates text from source language to target language using the Bhashini API.""" | |
if not text.strip(): | |
print('Input text is empty. Please provide valid text for translation.') | |
return {"status_code": 400, "message": "Input text is empty", "translated_content": None} | |
else: | |
print('Input text - ', text) | |
print(f'Starting translation process from {from_code} to {to_code}...') | |
gr.Warning(f'Translating to {to_code}...') | |
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' | |
headers = { | |
"Content-Type": "application/json", | |
"userID": bhashini_user_id, | |
"ulcaApiKey": bhashini_api_key | |
} | |
for key, value in headers.items(): | |
if not isinstance(value, str) or '\n' in value or '\r' in value: | |
print(f"Invalid header value for {key}: {value}") | |
return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None} | |
payload = { | |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], | |
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} | |
} | |
print('Sending initial request to get the pipeline...') | |
response = requests.post(url, json=payload, headers=headers) | |
if response.status_code != 200: | |
print(f'Error in initial request: {response.status_code}, Response: {response.text}') | |
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} | |
print('Initial request successful, processing response...') | |
response_data = response.json() | |
print('Full response data:', response_data) | |
if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]: | |
print('Unexpected response structure:', response_data) | |
return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None} | |
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] | |
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] | |
print(f'Service ID: {service_id}, Callback URL: {callback_url}') | |
headers2 = { | |
"Content-Type": "application/json", | |
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] | |
} | |
compute_payload = { | |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], | |
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} | |
} | |
print(f'Sending translation request with text: "{text}"') | |
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) | |
if compute_response.status_code != 200: | |
print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}') | |
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} | |
print('Translation request successful, processing translation...') | |
compute_response_data = compute_response.json() | |
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] | |
print(f'Translation successful. Translated content: "{translated_content}"') | |
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} | |
# Initialize PhiData Agent | |
agent = Agent( | |
name="Science Education Assistant", | |
role="You are a helpful science tutor for 10th-grade students", | |
instructions=[ | |
"You are an expert science teacher specializing in 10th-grade curriculum.", | |
"Provide clear, accurate, and age-appropriate explanations.", | |
"Use simple language and examples that students can understand.", | |
"Focus on concepts from physics, chemistry, and biology.", | |
"Structure responses with headings and bullet points when helpful.", | |
"Encourage learning and curiosity." | |
], | |
model=Groq(id="llama3-70b-8192", api_key=api_key), | |
markdown=True | |
) | |
# Set up Jinja2 environment | |
proj_dir = Path(__file__).parent | |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
template = env.get_template('template.j2') # For document context | |
template_html = env.get_template('template_html.j2') # For HTML output | |
# Response Generation Function | |
def retrieve_and_generate_response(query, cross_encoder_choice, history=None): | |
"""Generate response using semantic search and LLM""" | |
top_rerank = 25 | |
top_k_rank = 20 | |
if not query.strip(): | |
return "Please provide a valid question.", [] | |
try: | |
start_time = perf_counter() | |
# Encode query and search documents | |
query_vec = retriever.encode(query) | |
documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list() | |
documents = [doc["text"] for doc in documents] | |
# Re-rank documents using cross-encoder | |
cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
query_doc_pair = [[query, doc] for doc in documents] | |
cross_scores = cross_encoder_model.predict(query_doc_pair) | |
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
# Create context from top documents | |
context = "\n\n".join(documents[:10]) if documents else "" | |
context = f"Context information from educational materials:\n{context}\n\n" | |
# Add conversation history for context | |
history_context = "" | |
if history and len(history) > 0: | |
for user_msg, bot_msg in history[-2:]: # Last 2 exchanges | |
if user_msg and bot_msg: | |
history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n" | |
# Create full prompt | |
full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics." | |
# Generate response | |
response = agent.run(full_prompt) | |
response_text = response.content if hasattr(response, 'content') else str(response) | |
logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds") | |
return response_text, documents # Return documents for template | |
except Exception as e: | |
logger.error(f"Error in response generation: {e}") | |
return f"Error generating response: {str(e)}", [] | |
def simple_chat_function(message, history, cross_encoder_choice): | |
"""Chat function with semantic search and retriever integration""" | |
if not message.strip(): | |
return "", history, "" | |
# Generate response and get documents | |
response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history) | |
# Add to history | |
history.append([message, response]) | |
# Render template with documents and query | |
prompt_html = template_html.render(documents=documents, query=message) | |
return "", history, prompt_html | |
def translate_text(selected_language, history): | |
"""Translate the last response in history to the selected language.""" | |
iso_language_codes = { | |
"Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur", | |
"Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr", | |
"Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni", | |
"Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or" | |
} | |
to_code = iso_language_codes[selected_language] | |
response_text = history[-1][1] if history and history[-1][1] else '' | |
print('response_text for translation', response_text) | |
translation = bhashini_translate(response_text, to_code=to_code) | |
return translation.get('translated_content', 'Translation failed.') | |
# Gradio Interface with layout template | |
with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo: | |
# Header section | |
with gr.Row(): | |
with gr.Column(scale=10): | |
gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""") | |
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 9 std students</p>""") | |
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""") | |
with gr.Column(scale=3): | |
try: | |
gr.Image(value='logo.png', height=200, width=200) | |
except: | |
gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>") | |
# Chat and input components | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
bubble_full_width=False, | |
show_copy_button=True, | |
show_share_button=True, | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
scale=3, | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False, | |
) | |
submit_btn = gr.Button(value="Submit text", scale=1, variant="primary") | |
# Additional controls | |
cross_encoder = gr.Radio( | |
choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'], | |
value='(ACCURATE) BGE reranker', | |
label="Embeddings Model", | |
info="Select the model for document ranking" | |
) | |
language_dropdown = gr.Dropdown( | |
choices=[ | |
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", | |
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", | |
"Gujarati", "Odia" | |
], | |
value="Hindi", | |
label="Select Language for Translation" | |
) | |
translated_textbox = gr.Textbox(label="Translated Response") | |
prompt_html = gr.HTML() # Add HTML component for the template | |
# Event handlers | |
def update_chat_and_translate(message, history, cross_encoder_choice, selected_language): | |
if not message.strip(): | |
return "", history, "", "" | |
# Generate response and get documents | |
response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history) | |
history.append([message, response]) | |
# Translate response | |
translated_text = translate_text(selected_language, history) | |
# Render template with documents and query | |
prompt_html_content = template_html.render(documents=documents, query=message) | |
return "", history, translated_text, prompt_html_content | |
msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html]) | |
submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html]) | |
clear = gr.Button("Clear Conversation") | |
clear.click(lambda: ([], "", "", ""), outputs=[chatbot, msg, translated_textbox, prompt_html]) | |
# Example questions | |
gr.Examples( | |
examples=[ | |
'What is the difference between metals and non-metals?', | |
'What is an ionic bond?', | |
'Explain asexual reproduction', | |
'What is photosynthesis?', | |
'Explain Newton\'s laws of motion' | |
], | |
inputs=msg, | |
label="Try these example questions:" | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr | |
# from phi.agent import Agent | |
# from phi.model.groq import Groq | |
# import os | |
# import logging | |
# from sentence_transformers import CrossEncoder | |
# from backend.semantic_search import table, retriever | |
# import numpy as np | |
# from time import perf_counter | |
# import requests | |
# from jinja2 import Environment, FileSystemLoader | |
# # Set up logging | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# # API Key setup | |
# api_key = os.getenv("GROQ_API_KEY") | |
# if not api_key: | |
# gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.") | |
# logger.error("GROQ_API_KEY not found.") | |
# api_key = "" # Fallback to empty string, but this will fail without a key | |
# else: | |
# os.environ["GROQ_API_KEY"] = api_key | |
# # Bhashini API setup | |
# bhashini_api_key = os.getenv("API_KEY") | |
# bhashini_user_id = os.getenv("USER_ID") | |
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: | |
# """Translates text from source language to target language using the Bhashini API.""" | |
# if not text.strip(): | |
# print('Input text is empty. Please provide valid text for translation.') | |
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None} | |
# else: | |
# print('Input text - ', text) | |
# print(f'Starting translation process from {from_code} to {to_code}...') | |
# gr.Warning(f'Translating to {to_code}...') | |
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' | |
# headers = { | |
# "Content-Type": "application/json", | |
# "userID": bhashini_user_id, | |
# "ulcaApiKey": bhashini_api_key | |
# } | |
# payload = { | |
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], | |
# "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} | |
# } | |
# print('Sending initial request to get the pipeline...') | |
# response = requests.post(url, json=payload, headers=headers) | |
# if response.status_code != 200: | |
# print(f'Error in initial request: {response.status_code}, Response: {response.text}') | |
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} | |
# print('Initial request successful, processing response...') | |
# response_data = response.json() | |
# print('Full response data:', response_data) # Debug the full response | |
# if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]: | |
# print('Unexpected response structure:', response_data) | |
# return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None} | |
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] | |
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] | |
# print(f'Service ID: {service_id}, Callback URL: {callback_url}') | |
# headers2 = { | |
# "Content-Type": "application/json", | |
# response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] | |
# } | |
# compute_payload = { | |
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], | |
# "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} | |
# } | |
# print(f'Sending translation request with text: "{text}"') | |
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) | |
# if compute_response.status_code != 200: | |
# print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}') | |
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} | |
# print('Translation request successful, processing translation...') | |
# compute_response_data = compute_response.json() | |
# translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] | |
# print(f'Translation successful. Translated content: "{translated_content}"') | |
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} | |
# # Initialize PhiData Agent | |
# agent = Agent( | |
# name="Science Education Assistant", | |
# role="You are a helpful science tutor for 9th-grade students", | |
# instructions=[ | |
# "You are an expert science teacher specializing in 9th-grade curriculum.", | |
# "Provide clear, accurate, and age-appropriate explanations.", | |
# "Use simple language and examples that students can understand.", | |
# "Focus on concepts from physics, chemistry, and biology.", | |
# "Structure responses with headings and bullet points when helpful.", | |
# "Encourage learning and curiosity." | |
# ], | |
# model=Groq(id="llama3-70b-8192", api_key=api_key), | |
# markdown=True | |
# ) | |
# # Set up Jinja2 environment | |
# proj_dir = Path(__file__).parent | |
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# template_html = env.get_template('template_html.j2') | |
# # Response Generation Function | |
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None): | |
# """Generate response using semantic search and LLM""" | |
# top_rerank = 25 | |
# top_k_rank = 20 | |
# if not query.strip(): | |
# return "Please provide a valid question." | |
# try: | |
# start_time = perf_counter() | |
# # Encode query and search documents | |
# query_vec = retriever.encode(query) | |
# documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list() | |
# documents = [doc["text"] for doc in documents] | |
# # Re-rank documents using cross-encoder | |
# cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
# query_doc_pair = [[query, doc] for doc in documents] | |
# cross_scores = cross_encoder_model.predict(query_doc_pair) | |
# sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
# # Create context from top documents | |
# context = "\n\n".join(documents[:10]) if documents else "" | |
# context = f"Context information from educational materials:\n{context}\n\n" | |
# # Add conversation history for context | |
# history_context = "" | |
# if history and len(history) > 0: | |
# for user_msg, bot_msg in history[-2:]: # Last 2 exchanges | |
# if user_msg and bot_msg: | |
# history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n" | |
# # Create full prompt | |
# full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics." | |
# # Generate response | |
# response = agent.run(full_prompt) | |
# response_text = response.content if hasattr(response, 'content') else str(response) | |
# logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds") | |
# return response_text | |
# except Exception as e: | |
# logger.error(f"Error in response generation: {e}") | |
# return f"Error generating response: {str(e)}" | |
# def simple_chat_function(message, history, cross_encoder_choice): | |
# """Chat function with semantic search and retriever integration""" | |
# if not message.strip(): | |
# return "", history | |
# # Generate response using the semantic search function | |
# response = retrieve_and_generate_response(message, cross_encoder_choice, history) | |
# # Add to history | |
# history.append([message, response]) | |
# return "", history | |
# def translate_text(selected_language, history): | |
# """Translate the last response in history to the selected language.""" | |
# iso_language_codes = { | |
# "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur", | |
# "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr", | |
# "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni", | |
# "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or" | |
# } | |
# to_code = iso_language_codes[selected_language] | |
# response_text = history[-1][1] if history and history[-1][1] else '' | |
# print('response_text for translation', response_text) | |
# translation = bhashini_translate(response_text, to_code=to_code) | |
# return translation.get('translated_content', 'Translation failed.') | |
# # Gradio Interface with layout template | |
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo: | |
# # Header section | |
# with gr.Row(): | |
# with gr.Column(scale=10): | |
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""") | |
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""") | |
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""") | |
# with gr.Column(scale=3): | |
# try: | |
# gr.Image(value='logo.png', height=200, width=200) | |
# except: | |
# gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>") | |
# # Chat and input components | |
# chatbot = gr.Chatbot( | |
# [], | |
# elem_id="chatbot", | |
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
# bubble_full_width=False, | |
# show_copy_button=True, | |
# show_share_button=True, | |
# ) | |
# with gr.Row(): | |
# msg = gr.Textbox( | |
# scale=3, | |
# show_label=False, | |
# placeholder="Enter text and press enter", | |
# container=False, | |
# ) | |
# submit_btn = gr.Button(value="Submit text", scale=1, variant="primary") | |
# # Additional controls | |
# cross_encoder = gr.Radio( | |
# choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'], | |
# value='(ACCURATE) BGE reranker', | |
# label="Embeddings Model", | |
# info="Select the model for document ranking" | |
# ) | |
# language_dropdown = gr.Dropdown( | |
# choices=[ | |
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", | |
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", | |
# "Gujarati", "Odia" | |
# ], | |
# value="Hindi", | |
# label="Select Language for Translation" | |
# ) | |
# translated_textbox = gr.Textbox(label="Translated Response") | |
# # Event handlers | |
# def update_chat_and_translate(message, history, cross_encoder_choice, selected_language): | |
# if not message.strip(): | |
# return "", history, "" | |
# # Generate response | |
# response = retrieve_and_generate_response(message, cross_encoder_choice, history) | |
# history.append([message, response]) | |
# # Translate response | |
# translated_text = translate_text(selected_language, history) | |
# return "", history, translated_text | |
# msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox]) | |
# submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox]) | |
# clear = gr.Button("Clear Conversation") | |
# clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox]) | |
# # Example questions | |
# gr.Examples( | |
# examples=[ | |
# 'What is the difference between metals and non-metals?', | |
# 'What is an ionic bond?', | |
# 'Explain asexual reproduction', | |
# 'What is photosynthesis?', | |
# 'Explain Newton\'s laws of motion' | |
# ], | |
# inputs=msg, | |
# label="Try these example questions:" | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr | |
# import gradio as gr | |
# from phi.agent import Agent | |
# from phi.model.groq import Groq | |
# import os | |
# import logging | |
# from sentence_transformers import CrossEncoder | |
# from backend.semantic_search import table, retriever | |
# import numpy as np | |
# from time import perf_counter | |
# import requests | |
# # Set up logging | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# # API Key setup | |
# api_key = os.getenv("GROQ_API_KEY") | |
# if not api_key: | |
# gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.") | |
# logger.error("GROQ_API_KEY not found.") | |
# api_key = "" # Fallback to empty string, but this will fail without a key | |
# else: | |
# os.environ["GROQ_API_KEY"] = api_key | |
# # Bhashini API setup | |
# bhashini_api_key = os.getenv("API_KEY") | |
# bhashini_user_id = os.getenv("USER_ID") | |
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: | |
# """Translates text from source language to target language using the Bhashini API.""" | |
# if not text.strip(): | |
# print('Input text is empty. Please provide valid text for translation.') | |
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None} | |
# else: | |
# print('Input text - ', text) | |
# print(f'Starting translation process from {from_code} to {to_code}...') | |
# gr.Warning(f'Translating to {to_code}...') | |
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' | |
# headers = { | |
# "Content-Type": "application/json", | |
# "userID": bhashini_user_id, | |
# "ulcaApiKey": bhashini_api_key | |
# } | |
# payload = { | |
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], | |
# "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} | |
# } | |
# print('Sending initial request to get the pipeline...') | |
# response = requests.post(url, json=payload, headers=headers) | |
# if response.status_code != 200: | |
# print(f'Error in initial request: {response.status_code}, Response: {response.text}') | |
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} | |
# print('Initial request successful, processing response...') | |
# response_data = response.json() | |
# print('Full response data:', response_data) # Debug the full response | |
# if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]: | |
# print('Unexpected response structure:', response_data) | |
# return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None} | |
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] | |
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] | |
# print(f'Service ID: {service_id}, Callback URL: {callback_url}') | |
# headers2 = { | |
# "Content-Type": "application/json", | |
# response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] | |
# } | |
# compute_payload = { | |
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], | |
# "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} | |
# } | |
# print(f'Sending translation request with text: "{text}"') | |
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) | |
# if compute_response.status_code != 200: | |
# print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}') | |
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} | |
# print('Translation request successful, processing translation...') | |
# compute_response_data = compute_response.json() | |
# translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] | |
# print(f'Translation successful. Translated content: "{translated_content}"') | |
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} | |
# # Initialize PhiData Agent | |
# agent = Agent( | |
# name="Science Education Assistant", | |
# role="You are a helpful science tutor for 10th-grade students", | |
# instructions=[ | |
# "You are an expert science teacher specializing in 10th-grade curriculum.", | |
# "Provide clear, accurate, and age-appropriate explanations.", | |
# "Use simple language and examples that students can understand.", | |
# "Focus on concepts from physics, chemistry, and biology.", | |
# "Structure responses with headings and bullet points when helpful.", | |
# "Encourage learning and curiosity." | |
# ], | |
# model=Groq(id="llama3-70b-8192", api_key=api_key), | |
# markdown=True | |
# ) | |
# # Response Generation Function | |
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None): | |
# """Generate response using semantic search and LLM""" | |
# top_rerank = 25 | |
# top_k_rank = 20 | |
# if not query.strip(): | |
# return "Please provide a valid question." | |
# try: | |
# start_time = perf_counter() | |
# # Encode query and search documents | |
# query_vec = retriever.encode(query) | |
# documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list() | |
# documents = [doc["text"] for doc in documents] | |
# # Re-rank documents using cross-encoder | |
# cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
# query_doc_pair = [[query, doc] for doc in documents] | |
# cross_scores = cross_encoder_model.predict(query_doc_pair) | |
# sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
# # Create context from top documents | |
# context = "\n\n".join(documents[:10]) if documents else "" | |
# context = f"Context information from educational materials:\n{context}\n\n" | |
# # Add conversation history for context | |
# history_context = "" | |
# if history and len(history) > 0: | |
# for user_msg, bot_msg in history[-2:]: # Last 2 exchanges | |
# if user_msg and bot_msg: | |
# history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n" | |
# # Create full prompt | |
# full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics." | |
# # Generate response | |
# response = agent.run(full_prompt) | |
# response_text = response.content if hasattr(response, 'content') else str(response) | |
# logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds") | |
# return response_text | |
# except Exception as e: | |
# logger.error(f"Error in response generation: {e}") | |
# return f"Error generating response: {str(e)}" | |
# def simple_chat_function(message, history, cross_encoder_choice): | |
# """Chat function with semantic search and retriever integration""" | |
# if not message.strip(): | |
# return "", history | |
# # Generate response using the semantic search function | |
# response = retrieve_and_generate_response(message, cross_encoder_choice, history) | |
# # Add to history | |
# history.append([message, response]) | |
# return "", history | |
# def translate_text(selected_language, history): | |
# """Translate the last response in history to the selected language.""" | |
# iso_language_codes = { | |
# "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur", | |
# "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr", | |
# "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni", | |
# "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or" | |
# } | |
# to_code = iso_language_codes[selected_language] | |
# response_text = history[-1][1] if history and history[-1][1] else '' | |
# print('response_text for translation', response_text) | |
# translation = bhashini_translate(response_text, to_code=to_code) | |
# return translation.get('translated_content', 'Translation failed.') | |
# # Gradio Interface with layout template | |
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo: | |
# # Header section | |
# with gr.Row(): | |
# with gr.Column(scale=10): | |
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""") | |
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""") | |
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""") | |
# with gr.Column(scale=3): | |
# try: | |
# gr.Image(value='logo.png', height=200, width=200) | |
# except: | |
# gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>") | |
# # Chat and input components | |
# chatbot = gr.Chatbot( | |
# [], | |
# elem_id="chatbot", | |
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
# bubble_full_width=False, | |
# show_copy_button=True, | |
# show_share_button=True, | |
# ) | |
# with gr.Row(): | |
# msg = gr.Textbox( | |
# scale=3, | |
# show_label=False, | |
# placeholder="Enter text and press enter", | |
# container=False, | |
# ) | |
# submit_btn = gr.Button(value="Submit text", scale=1, variant="primary") | |
# # Additional controls | |
# cross_encoder = gr.Radio( | |
# choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'], | |
# value='(ACCURATE) BGE reranker', | |
# label="Embeddings Model", | |
# info="Select the model for document ranking" | |
# ) | |
# language_dropdown = gr.Dropdown( | |
# choices=[ | |
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", | |
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", | |
# "Gujarati", "Odia" | |
# ], | |
# value="Hindi", | |
# label="Select Language for Translation" | |
# ) | |
# translated_textbox = gr.Textbox(label="Translated Response") | |
# # Event handlers | |
# def update_chat_and_translate(message, history, cross_encoder_choice, selected_language): | |
# if not message.strip(): | |
# return "", history, "" | |
# # Generate response | |
# response = retrieve_and_generate_response(message, cross_encoder_choice, history) | |
# history.append([message, response]) | |
# # Translate response | |
# translated_text = translate_text(selected_language, history) | |
# return "", history, translated_text | |
# msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox]) | |
# submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox]) | |
# clear = gr.Button("Clear Conversation") | |
# clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox]) | |
# # Example questions | |
# gr.Examples( | |
# examples=[ | |
# 'What is the difference between metals and non-metals?', | |
# 'What is an ionic bond?', | |
# 'Explain asexual reproduction', | |
# 'What is photosynthesis?', | |
# 'Explain Newton\'s laws of motion' | |
# ], | |
# inputs=msg, | |
# label="Try these example questions:" | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch(server_name="0.0.0.0", server_port=7860) | |
# 1f# import gradio as gr# import requests | |
# # import gradio as gr | |
# # from ragatouille import RAGPretrainedModel | |
# # import logging | |
# # from pathlib import Path | |
# # from time import perf_counter | |
# # from sentence_transformers import CrossEncoder | |
# # from huggingface_hub import InferenceClient | |
# # from jinja2 import Environment, FileSystemLoader | |
# # import numpy as np | |
# # from os import getenv | |
# # from backend.query_llm import generate_hf, generate_qwen | |
# # from backend.semantic_search import table, retriever | |
# # from huggingface_hub import InferenceClient | |
# # # Bhashini API translation function | |
# # api_key = getenv('API_KEY') | |
# # user_id = getenv('USER_ID') | |
# # def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: | |
# # """Translates text from source language to target language using the Bhashini API.""" | |
# # if not text.strip(): | |
# # print('Input text is empty. Please provide valid text for translation.') | |
# # return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None} | |
# # else: | |
# # print('Input text - ',text) | |
# # print(f'Starting translation process from {from_code} to {to_code}...') | |
# # print(f'Starting translation process from {from_code} to {to_code}...') | |
# # gr.Warning(f'Translating to {to_code}...') | |
# # url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' | |
# # headers = { | |
# # "Content-Type": "application/json", | |
# # "userID": user_id, | |
# # "ulcaApiKey": api_key | |
# # } | |
# # payload = { | |
# # "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], | |
# # "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} | |
# # } | |
# # print('Sending initial request to get the pipeline...') | |
# # response = requests.post(url, json=payload, headers=headers) | |
# # if response.status_code != 200: | |
# # print(f'Error in initial request: {response.status_code}') | |
# # return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} | |
# # print('Initial request successful, processing response...') | |
# # response_data = response.json() | |
# # service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] | |
# # callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] | |
# # print(f'Service ID: {service_id}, Callback URL: {callback_url}') | |
# # headers2 = { | |
# # "Content-Type": "application/json", | |
# # response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] | |
# # } | |
# # compute_payload = { | |
# # "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], | |
# # "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} | |
# # } | |
# # print(f'Sending translation request with text: "{text}"') | |
# # compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) | |
# # if compute_response.status_code != 200: | |
# # print(f'Error in translation request: {compute_response.status_code}') | |
# # return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} | |
# # print('Translation request successful, processing translation...') | |
# # compute_response_data = compute_response.json() | |
# # translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] | |
# # print(f'Translation successful. Translated content: "{translated_content}"') | |
# # return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} | |
# # # Existing chatbot functions | |
# # VECTOR_COLUMN_NAME = "vector" | |
# # TEXT_COLUMN_NAME = "text" | |
# # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
# # proj_dir = Path(__file__).parent | |
# # logging.basicConfig(level=logging.INFO) | |
# # logger = logging.getLogger(__name__) | |
# # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN) | |
# # env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# # template = env.get_template('template.j2') | |
# # template_html = env.get_template('template_html.j2') | |
# # # def add_text(history, text): | |
# # # history = [] if history is None else history | |
# # # history = history + [(text, None)] | |
# # # return history, gr.Textbox(value="", interactive=False) | |
# # def bot(history, cross_encoder): | |
# # top_rerank = 25 | |
# # top_k_rank = 20 | |
# # query = history[-1][0] if history else '' | |
# # print('\nQuery: ',query ) | |
# # print('\nHistory:',history) | |
# # if not query: | |
# # gr.Warning("Please submit a non-empty string as a prompt") | |
# # raise ValueError("Empty string was submitted") | |
# # logger.warning('Retrieving documents...') | |
# # if cross_encoder == '(HIGH ACCURATE) ColBERT': | |
# # gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# # RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# # documents_full = RAG_db.search(query, k=top_k_rank) | |
# # documents = [item['content'] for item in documents_full] | |
# # prompt = template.render(documents=documents, query=query) | |
# # prompt_html = template_html.render(documents=documents, query=query) | |
# # generate_fn = generate_hf | |
# # history[-1][1] = "" | |
# # for character in generate_fn(prompt, history[:-1]): | |
# # history[-1][1] = character | |
# # yield history, prompt_html | |
# # else: | |
# # document_start = perf_counter() | |
# # query_vec = retriever.encode(query) | |
# # doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
# # documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
# # documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
# # query_doc_pair = [[query, doc] for doc in documents] | |
# # if cross_encoder == '(FAST) MiniLM-L6v2': | |
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
# # elif cross_encoder == '(ACCURATE) BGE reranker': | |
# # cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
# # cross_scores = cross_encoder1.predict(query_doc_pair) | |
# # sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
# # documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
# # document_time = perf_counter() - document_start | |
# # prompt = template.render(documents=documents, query=query) | |
# # prompt_html = template_html.render(documents=documents, query=query) | |
# # #generate_fn = generate_hf | |
# # generate_fn=generate_qwen | |
# # # Create a new history entry instead of modifying the tuple directly | |
# # new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt | |
# # output='' | |
# # # for character in generate_fn(prompt, history[:-1]): | |
# # # #new_history[-1] = (query, character) | |
# # # output+=character | |
# # output=generate_fn(prompt, history[:-1]) | |
# # print('Output:',output) | |
# # new_history[-1] = (prompt, output) #query replaced with prompt | |
# # print('New History',new_history) | |
# # #print('prompt html',prompt_html)# Update the last tuple with new text | |
# # history_list = list(history[-1]) | |
# # history_list[1] = output # Assuming `character` is what you want to assign | |
# # # Update the history with the modified list converted back to a tuple | |
# # history[-1] = tuple(history_list) | |
# # #history[-1][1] = character | |
# # # yield new_history, prompt_html | |
# # yield history, prompt_html | |
# # # new_history,prompt_html | |
# # # history[-1][1] = "" | |
# # # for character in generate_fn(prompt, history[:-1]): | |
# # # history[-1][1] = character | |
# # # yield history, prompt_html | |
# # #def translate_text(response_text, selected_language): | |
# # def translate_text(selected_language,history): | |
# # iso_language_codes = { | |
# # "Hindi": "hi", | |
# # "Gom": "gom", | |
# # "Kannada": "kn", | |
# # "Dogri": "doi", | |
# # "Bodo": "brx", | |
# # "Urdu": "ur", | |
# # "Tamil": "ta", | |
# # "Kashmiri": "ks", | |
# # "Assamese": "as", | |
# # "Bengali": "bn", | |
# # "Marathi": "mr", | |
# # "Sindhi": "sd", | |
# # "Maithili": "mai", | |
# # "Punjabi": "pa", | |
# # "Malayalam": "ml", | |
# # "Manipuri": "mni", | |
# # "Telugu": "te", | |
# # "Sanskrit": "sa", | |
# # "Nepali": "ne", | |
# # "Santali": "sat", | |
# # "Gujarati": "gu", | |
# # "Odia": "or" | |
# # } | |
# # to_code = iso_language_codes[selected_language] | |
# # response_text = history[-1][1] if history else '' | |
# # print('response_text for translation',response_text) | |
# # translation = bhashini_translate(response_text, to_code=to_code) | |
# # return translation['translated_content'] | |
# # # Gradio interface | |
# # with gr.Blocks(theme='gradio/soft') as CHATBOT: | |
# # history_state = gr.State([]) | |
# # with gr.Row(): | |
# # with gr.Column(scale=10): | |
# # gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""") | |
# # gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""") | |
# # gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""") | |
# # with gr.Column(scale=3): | |
# # gr.Image(value='logo.png', height=200, width=200) | |
# # chatbot = gr.Chatbot( | |
# # [], | |
# # elem_id="chatbot", | |
# # avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
# # 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
# # bubble_full_width=False, | |
# # show_copy_button=True, | |
# # show_share_button=True, | |
# # ) | |
# # with gr.Row(): | |
# # txt = gr.Textbox( | |
# # scale=3, | |
# # show_label=False, | |
# # placeholder="Enter text and press enter", | |
# # container=False, | |
# # ) | |
# # txt_btn = gr.Button(value="Submit text", scale=1) | |
# # cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)") | |
# # language_dropdown = gr.Dropdown( | |
# # choices=[ | |
# # "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", | |
# # "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", | |
# # "Gujarati", "Odia" | |
# # ], | |
# # value="Hindi", # default to Hindi | |
# # label="Select Language for Translation" | |
# # ) | |
# # prompt_html = gr.HTML() | |
# # translated_textbox = gr.Textbox(label="Translated Response") | |
# # def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown): | |
# # print('History state',history_state) | |
# # history = history_state | |
# # history.append((txt, "")) | |
# # #history_state.value=(history) | |
# # # Call bot function | |
# # # bot_output = list(bot(history, cross_encoder)) | |
# # bot_output = next(bot(history, cross_encoder)) | |
# # print('bot_output',bot_output) | |
# # #history, prompt_html = bot_output[-1] | |
# # history, prompt_html = bot_output | |
# # print('History',history) | |
# # # Update the history state | |
# # history_state[:] = history | |
# # # Translate text | |
# # translated_text = translate_text(language_dropdown, history) | |
# # return history, prompt_html, translated_text | |
# # txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox]) | |
# # txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox]) | |
# # examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?', | |
# # 'EXPLAIN GOLGI APPARATUS'] | |
# # gr.Examples(examples, txt) | |
# # # Launch the Gradio application | |
# # CHATBOT.launch(share=True,debug=True) | |