Den4ikAI's picture
Update app.py
ddb6473 verified
raw
history blame
1.13 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_path = "RUSpam/spam_deberta_v4"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
def predict_spam(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)
predicted_class = torch.argmax(logits, dim=1).item()
spam_probability = probabilities[0][1].item()
not_spam_probability = probabilities[0][0].item()
result = "Спам" if predicted_class == 1 else "Не спам"
return result
# Создание интерфейса Gradio
iface = gr.Interface(
fn=predict_spam,
inputs=gr.Textbox(lines=5, label="Введите текст"),
outputs=[
gr.Label(label="Результат")
],
title="Определение спама в русскоязычных текстах"
)
iface.launch()