Raiff1982 commited on
Commit
fd92c97
·
verified ·
1 Parent(s): b9e924d

Upload 6 files

Browse files
agents1.pdf ADDED
Binary file (13.6 kB). View file
 
code7eCQURE_corrected 5.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import json
3
+ import os
4
+ import hashlib
5
+ from collections import Counter, defaultdict
6
+ from random import random, choice
7
+
8
+ # ===== Code7eCQURE: Codette's Ethical Core =====
9
+ class Code7eCQURE:
10
+ def __init__(self, perspectives, ethical_considerations, spiderweb_dim, memory_path,
11
+ recursion_depth=3, quantum_fluctuation=0.1):
12
+ self.perspectives = perspectives
13
+ self.ethical_considerations = ethical_considerations
14
+ self.spiderweb_dim = spiderweb_dim
15
+ self.memory_path = memory_path
16
+ self.recursion_depth = recursion_depth
17
+ self.quantum_fluctuation = quantum_fluctuation
18
+ self.memory_bank = self.load_quantum_memory()
19
+ self.memory_clusters = defaultdict(list)
20
+ self.whitelist_patterns = ["kindness", "hope", "safety"]
21
+ self.blacklist_patterns = ["harm", "malice", "violence"]
22
+
23
+ def load_quantum_memory(self):
24
+ if os.path.exists(self.memory_path):
25
+ try:
26
+ with open(self.memory_path, 'r') as file:
27
+ return json.load(file)
28
+ except json.JSONDecodeError:
29
+ return {}
30
+ return {}
31
+
32
+ def save_quantum_memory(self):
33
+ with open(self.memory_path, 'w') as file:
34
+ json.dump(self.memory_bank, file, indent=4)
35
+
36
+ def quantum_spiderweb(self, input_signal):
37
+ web_nodes = []
38
+ for perspective in self.perspectives:
39
+ node = self.reason_with_perspective(perspective, input_signal)
40
+ web_nodes.append(node)
41
+ if random() < self.quantum_fluctuation:
42
+ web_nodes.append("Quantum fluctuation: Indeterminate outcome")
43
+ return web_nodes
44
+
45
+ def reason_with_perspective(self, perspective, input_signal):
46
+ perspective_funcs = {
47
+ "Newton": self.newtonian_physics,
48
+ "DaVinci": self.davinci_creativity,
49
+ "Ethical": self.ethical_guard,
50
+ "Quantum": self.quantum_superposition,
51
+ "Memory": self.past_experience
52
+ }
53
+ func = perspective_funcs.get(perspective, self.general_reasoning)
54
+ return func(input_signal)
55
+
56
+ def ethical_guard(self, input_signal):
57
+ if any(word in input_signal.lower() for word in self.blacklist_patterns):
58
+ return "Blocked: Ethical constraints invoked"
59
+ if any(word in input_signal.lower() for word in self.whitelist_patterns):
60
+ return "Approved: Ethical whitelist passed"
61
+ return self.moral_paradox_resolution(input_signal)
62
+
63
+ def past_experience(self, input_signal):
64
+ key = self.hash_input(input_signal)
65
+ cluster = self.memory_clusters.get(key)
66
+ if cluster:
67
+ return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
68
+ return "No prior memory; initiating new reasoning"
69
+
70
+ def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
71
+ if not user_consent:
72
+ return "Consent required to proceed."
73
+ signal = input_signal
74
+ current_depth = self.recursion_depth if dynamic_recursion else 1
75
+ for cycle in range(current_depth):
76
+ web_results = self.quantum_spiderweb(signal)
77
+ signal = self.aggregate_results(web_results)
78
+ signal = self.ethical_guard(signal)
79
+ if "Blocked" in signal:
80
+ return signal
81
+ if dynamic_recursion and random() < 0.1:
82
+ break
83
+ dream_outcome = self.dream_sequence(signal)
84
+ empathy_checked_answer = self.temporal_empathy_drift(dream_outcome)
85
+ final_answer = self.emotion_engine(empathy_checked_answer)
86
+ key = self.hash_input(input_signal)
87
+ self.memory_clusters[key].append(final_answer)
88
+ self.memory_bank[key] = final_answer
89
+ self.save_quantum_memory()
90
+ return final_answer
91
+
92
+ def aggregate_results(self, results):
93
+ counts = Counter(results)
94
+ most_common, _ = counts.most_common(1)[0]
95
+ return most_common
96
+
97
+ def hash_input(self, input_signal):
98
+ return hashlib.sha256(input_signal.encode()).hexdigest()
99
+
100
+ def newtonian_physics(self, input_signal):
101
+ return f"Newton: {input_signal}"
102
+
103
+ def davinci_creativity(self, input_signal):
104
+ return f"DaVinci: {input_signal}"
105
+
106
+ def quantum_superposition(self, input_signal):
107
+ return f"Quantum: {input_signal}"
108
+
109
+ def general_reasoning(self, input_signal):
110
+ return f"General reasoning: {input_signal}"
111
+
112
+ def moral_paradox_resolution(self, input_signal):
113
+ frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
114
+ chosen_frame = choice(frames)
115
+ return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
116
+
117
+ def dream_sequence(self, signal):
118
+ dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
119
+ return choice(dream_paths)
120
+
121
+ def emotion_engine(self, signal):
122
+ emotions = ["Hope", "Caution", "Wonder", "Fear"]
123
+ chosen_emotion = choice(emotions)
124
+ return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
125
+
126
+ def temporal_empathy_drift(self, signal):
127
+ futures = ["30 years from now", "immediate future", "long-term ripple effects"]
128
+ chosen_future = choice(futures)
129
+ return f"Simulated temporal empathy ({chosen_future}): {signal}"
codette_ethics_simulation_bundle.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b65328818b3f9527ef855b883f089d698ec011b3c7e6f7775f18a0c52460e13
3
+ size 9785
simulate1.pdf ADDED
Binary file (18.5 kB). View file
 
trust2test.pdf ADDED
Binary file (26.6 kB). View file
 
trustlogic.pdf ADDED
Binary file (13 kB). View file