File size: 11,046 Bytes
c005ef1
42ecad8
 
 
 
9f9138d
 
 
c005ef1
42ecad8
7c29aab
42ecad8
ed8445d
01d7ddf
ed8445d
 
 
42ecad8
c005ef1
 
 
 
 
 
 
42ecad8
 
c005ef1
42ecad8
 
 
 
 
c005ef1
 
 
 
 
 
 
 
 
 
 
 
b88bbe1
c005ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ecad8
c005ef1
 
9f9138d
 
7c29aab
 
 
9f9138d
b88bbe1
7c29aab
9f9138d
7c29aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ecad8
7c29aab
42ecad8
7c29aab
42ecad8
7c29aab
 
 
 
 
42ecad8
7c29aab
c005ef1
42ecad8
7c29aab
 
9f9138d
 
 
 
 
 
 
7c29aab
9f9138d
42ecad8
9f9138d
42ecad8
e30a956
c005ef1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from fastapi import FastAPI, File, UploadFile, HTTPException, Form
import google.generativeai as genai
from PIL import Image
import io
import json
import re
import os
import uvicorn
from enum import Enum

app = FastAPI()

# Secure API key retrieval
api_key = "AIzaSyAQLgLNZmeCpSbToD--5PUT1ewXfGZkllc"
if not api_key:
    raise RuntimeError("GOOGLE_API_KEY is not set in the environment variables.")
genai.configure(api_key=api_key)

class AnalysisType(str, Enum):
    DETECT_ALLERGENS = "detect_allergens"
    DETAILED_NUTRIENT_INFO = "detailed_nutrient_info"
    LEARN_ABOUT_FOOD = "learn_about_food"
    FUN_FACTS = "fun_facts"
    GENERATE_DISH = "generate_dish"

@app.get("/")
def read_root():
    return {"message": "Food Analysis API is running!"}

@app.head("/")
async def root_head():
    return {}  # Empty response for HEAD requests

@app.post("/analyze-food")
async def analyze_food_image(
    file: UploadFile = File(...),
    analysis_type: AnalysisType = Form(...)
):
    """Analyzes food items in the image based on the selected analysis type"""
    
    # Read the uploaded image file
    image_bytes = await file.read()
    img = Image.open(io.BytesIO(image_bytes))

    # Load the generative model
    model = genai.GenerativeModel("gemini-2.0-flash")  # Optimized for real-time image processing

    # Define prompts based on analysis type
    prompts = {
        AnalysisType.DETECT_ALLERGENS: """
        Identify all food items in the given image and list potential allergens.
        Return the response in valid JSON format following this structure:
        
        ```json
        {
          "detected_food_items": [
            {
              "food_item": "Detected food name",
              "quantity": "Approximate quantity",
              "potential_allergens": ["allergen1", "allergen2"],
              "allergen_severity": {
                "allergen1": "high/medium/low",
                "allergen2": "high/medium/low"
              },
              "common_cross_reactivity": ["other allergen1", "other allergen2"]
            }
          ]
        }
        ```
        
        Ensure the response is valid JSON inside triple backticks.
        """,
        
        AnalysisType.DETAILED_NUTRIENT_INFO: """
        Identify all food items in the given image and provide comprehensive nutritional information.
        Return the response in valid JSON format following this structure:
        
        ```json
        {
          "detected_food_items": [
            {
              "food_item": "Detected food name",
              "quantity": "Approximate quantity",
              "nutritional_info": {
                "calories_kcal": value,
                "protein_g": value,
                "carbohydrates_g": value,
                "fat_g": value,
                "fiber_g": value,
                "sugar_g": value,
                "sodium_mg": value,
                "potassium_mg": value,
                "calcium_mg": value,
                "iron_mg": value,
                "vitamins": {
                  "Vitamin A_mcg": value,
                  "Vitamin C_mg": value,
                  "Vitamin D_mcg": value,
                  "Vitamin E_mg": value,
                  "Vitamin K_mcg": value,
                  "Vitamin B1_mg": value,
                  "Vitamin B2_mg": value,
                  "Vitamin B3_mg": value,
                  "Vitamin B6_mg": value,
                  "Vitamin B12_mcg": value,
                  "Folate_mcg": value
                },
                "minerals": {
                  "Magnesium_mg": value,
                  "Zinc_mg": value,
                  "Selenium_mcg": value,
                  "Phosphorus_mg": value
                }
              },
              "glycemic_index": value,
              "macronutrient_ratio": {
                "protein_percent": value,
                "carbs_percent": value,
                "fat_percent": value
              }
            }
          ],
          "total_meal_nutrition": {
            "calories_kcal": value,
            "protein_g": value,
            "carbohydrates_g": value,
            "fat_g": value
          }
        }
        ```
        
        Ensure the response is valid JSON inside triple backticks.
        """,
        
        AnalysisType.LEARN_ABOUT_FOOD: """
        Identify all food items in the given image and provide educational information about them.
        Return the response in valid JSON format following this structure:
        
        ```json
        {
          "detected_food_items": [
            {
              "food_item": "Detected food name",
              "origin": "Geographic origin of the food",
              "cultural_significance": "Brief description of cultural importance",
              "history": "Brief history of the food",
              "preparation_methods": ["method1", "method2"],
              "key_ingredients": ["ingredient1", "ingredient2"],
              "nutritional_highlights": ["highlight1", "highlight2"],
              "health_benefits": ["benefit1", "benefit2"],
              "interesting_facts": ["fact1", "fact2"]
            }
          ]
        }
        ```
        
        Ensure the response is valid JSON inside triple backticks.
        """,
        
        AnalysisType.FUN_FACTS: """
        Identify all food items in the given image and provide fun and interesting facts about them.
        Return the response in valid JSON format following this structure:
        
        ```json
        {
          "detected_food_items": [
            {
              "food_item": "Detected food name",
              "fun_facts": [
                "Fun fact 1 about this food",
                "Fun fact 2 about this food",
                "Fun fact 3 about this food"
              ],
              "did_you_know": "An interesting surprising fact",
              "world_records": ["Any world records related to this food"],
              "pop_culture_references": ["How this food appears in movies, TV, etc."],
              "weird_traditions": ["Strange traditions involving this food"]
            }
          ]
        }
        ```
        
        Ensure the response is valid JSON inside triple backticks.
        """,
        
        AnalysisType.GENERATE_DISH: """
        Identify all food items in the given image and suggest creative dishes that can be made with them.
        Return the response in valid JSON format following this structure:
        
        ```json
        {
          "detected_ingredients": ["ingredient1", "ingredient2"],
          "suggested_dishes": [
            {
              "dish_name": "Creative dish name",
              "cuisine_type": "Type of cuisine",
              "difficulty_level": "easy/medium/hard",
              "preparation_time_minutes": value,
              "ingredients": {
                "from_image": ["ingredient1", "ingredient2"],
                "additional_needed": ["extra1", "extra2"]
              },
              "recipe_steps": [
                "Step 1 description",
                "Step 2 description"
              ],
              "nutritional_highlights": ["highlight1", "highlight2"],
              "serving_suggestions": ["suggestion1", "suggestion2"]
            }
          ]
        }
        ```
        
        Ensure the response is valid JSON inside triple backticks.
        """
    }

    # Get the appropriate prompt
    prompt = prompts.get(analysis_type)
    if not prompt:
        raise HTTPException(status_code=400, detail="Invalid analysis type")

    # Get response from API
    response = model.generate_content([prompt, img])

    # Extract JSON response
    try:
        # Use regex to extract JSON block
        match = re.search(r'```json\s*(\{.*?\})\s*```', response.text, re.DOTALL)
        if match:
            json_response = match.group(1)  # Extract JSON content
            return json.loads(json_response)  # Convert to Python dictionary
        else:
            return {"error": "Response does not contain valid JSON format", "raw_response": response.text}
    except json.JSONDecodeError:
        return {"error": "Failed to parse JSON response", "raw_response": response.text}

# Keep the original analyze endpoint for backward compatibility
@app.post("/analyze")
async def analyze_food_image_original(file: UploadFile = File()):
    """Analyzes food items in the image using Gemini 1.5 Flash (original endpoint)"""
    
    # Read the uploaded image file
    image_bytes = await file.read()
    img = Image.open(io.BytesIO(image_bytes))

    # Load the generative model
    model = genai.GenerativeModel("gemini-2.0-flash")  # Optimized for real-time image processing

    # Updated structured JSON prompt
    prompt = """
    Identify all food items in the given image and determine their approximate quantity. Then, provide nutritional information 
    in valid JSON format following this structure:

    ```json
    {
      "detected_food_items": [
        {
          "food_item": "Detected food name",
          "quantity": "Approximate quantity (e.g., 1 bowl, 2 slices, half a chapati)",
          "nutritional_info": {
            "calories_kcal": value,
            "protein_g": value,
            "fiber_g": value,
            "vitamins": {
              "Vitamin A_mcg": value,
              "Vitamin C_mg": value,
              "Vitamin D_mcg": value,
              "Vitamin E_mg": value,
              "Vitamin K_mcg": value,
              "Vitamin B1_mg": value,
              "Vitamin B2_mg": value,
              "Vitamin B3_mg": value,
              "Vitamin B6_mg": value,
              "Vitamin B12_mcg": value,
              "Folate_mcg": value
            }
          },
          "health_benefits": [
            "Brief description of health benefit 1",
            "Brief description of health benefit 2"
          ]
        }
      ]
    }
    ```

    - **Ensure the response is valid JSON** inside triple backticks (```json ... ```).
    - **Include accurate nutritional values based on the given quantity.**
    - **If exact values are unavailable, provide estimated values.**
    - **Ensure proper formatting and completeness of data.**
    """

    # Get response from API
    response = model.generate_content([prompt, img])

    # Extract JSON response
    try:
        # Use regex to extract JSON block
        match = re.search(r'```json\s*(\{.*?\})\s*```', response.text, re.DOTALL)
        if match:
            json_response = match.group(1)  # Extract JSON content
            return json.loads(json_response)  # Convert to Python dictionary
        else:
            return {"error": "Response does not contain valid JSON format", "raw_response": response.text}
    except json.JSONDecodeError:
        return {"error": "Failed to parse JSON response", "raw_response": response.text}

# Entry point for Render deployment
if __name__ == "__main__":
    port = int(os.getenv("PORT", 7860))  # Render assigns PORT dynamically
    uvicorn.run(app, host="0.0.0.0", port=port)