|
from flask import Flask, render_template, request
|
|
import folium
|
|
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
|
|
import pandas as pd
|
|
import os
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
|
|
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']
|
|
|
|
|
|
@app.route('/')
|
|
def home():
|
|
return render_template('index.html', map_html="", selected_map="Home")
|
|
|
|
|
|
@app.route('/prodction_analysis', methods=['GET', 'POST'])
|
|
def production_analysis():
|
|
crop_options = df['Crop'].unique().tolist()
|
|
selected_crop = request.form.get('crop_type') if request.method == 'POST' else None
|
|
|
|
if not selected_crop:
|
|
return render_template('index.html', map_html="", selected_map="Production Analysis",
|
|
crop_options=crop_options, selected_crop=None)
|
|
|
|
crop_data = df[df['Crop'] == selected_crop]
|
|
|
|
if crop_data.empty:
|
|
return render_template('index.html', map_html="", selected_map="No Data Available",
|
|
crop_options=crop_options, selected_crop=selected_crop)
|
|
|
|
time_index = crop_data['Crop_Year'].unique()
|
|
heatmap_data = [
|
|
[[row['Latitude'], row['Longitude']] for _, row in crop_data[crop_data['Crop_Year'] == year].iterrows()]
|
|
for year in time_index
|
|
]
|
|
|
|
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
|
heatmap = HeatMapWithTime(
|
|
heatmap_data,
|
|
index=[str(year) for year in time_index],
|
|
auto_play=True,
|
|
max_opacity=0.6
|
|
)
|
|
heatmap.add_to(m)
|
|
|
|
map_html = m._repr_html_()
|
|
return render_template('index.html', map_html=map_html, selected_map="Production Heatmap Analysis",
|
|
crop_options=crop_options, selected_crop=selected_crop)
|
|
|
|
|
|
@app.route('/heatmap_analysis')
|
|
def heatmap_analysis():
|
|
global df
|
|
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
|
fg = folium.FeatureGroup(name="Crops")
|
|
m.add_child(fg)
|
|
df_sampled = df.sample(frac=0.005, random_state=42)
|
|
for crop in df_sampled['Crop'].unique():
|
|
subgroup = FeatureGroupSubGroup(fg, crop)
|
|
m.add_child(subgroup)
|
|
crop_data = df_sampled[df_sampled['Crop'] == crop]
|
|
|
|
heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()]
|
|
HeatMap(heatmap_data).add_to(subgroup)
|
|
|
|
folium.LayerControl(collapsed=False).add_to(m)
|
|
|
|
map_html = m._repr_html_()
|
|
return render_template('index.html', map_html=map_html, selected_map="Crop Heatmap Analysis")
|
|
|
|
|
|
@app.route('/season_analysis')
|
|
def season_analysis():
|
|
global df
|
|
|
|
|
|
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
|
|
|
|
|
df_sampled = df.sample(frac=0.005, random_state=42)
|
|
|
|
|
|
top_crops = {}
|
|
|
|
|
|
for _, row in df_sampled.iterrows():
|
|
lat_lon = (row['Latitude'], row['Longitude'])
|
|
crop = row['Crop']
|
|
production = row['Production']
|
|
|
|
if lat_lon not in top_crops:
|
|
top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']}
|
|
|
|
if crop not in top_crops[lat_lon]['Crops']:
|
|
top_crops[lat_lon]['Crops'][crop] = 0
|
|
top_crops[lat_lon]['Crops'][crop] += production
|
|
|
|
|
|
for location, data in top_crops.items():
|
|
top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]
|
|
|
|
|
|
season_colors = {
|
|
'Kharif': 'orange',
|
|
'Rabi': 'green',
|
|
'Winter': 'blue',
|
|
'Autumn':'pink',
|
|
'Rabi':'brown',
|
|
'Summer':'yellow',
|
|
'Whole Year':'Red'
|
|
}
|
|
|
|
for (latitude, longitude), data in top_crops.items():
|
|
season = data['Season']
|
|
top_crop_list = data['Crops']
|
|
area = data['Area']
|
|
|
|
|
|
top_crops_str = "<br>".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list])
|
|
|
|
|
|
folium.CircleMarker(
|
|
location=[latitude, longitude],
|
|
radius=7,
|
|
color=season_colors.get(season, 'gray'),
|
|
fill=True,
|
|
fill_color=season_colors.get(season, 'gray'),
|
|
fill_opacity=0.7,
|
|
tooltip=(f"Latitude: {latitude}<br>"
|
|
f"Longitude: {longitude}<br>"
|
|
f"Season: {season}<br>"
|
|
f"Area: {area}<br>"
|
|
f"Top 5 Crops:<br>{top_crops_str}")
|
|
).add_to(m)
|
|
|
|
|
|
map_html = m._repr_html_()
|
|
|
|
|
|
return render_template('index.html', map_html=map_html, selected_map="Season Analysis")
|
|
|
|
|
|
@app.route('/crop_analysis')
|
|
def crop_analysis():
|
|
global df
|
|
df_sampled = df.sample(frac=0.005, random_state=42)
|
|
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
|
|
|
for district in df_sampled['District'].unique():
|
|
district_data = df_sampled[df_sampled['District'] == district]
|
|
top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist()
|
|
lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude']
|
|
|
|
folium.Marker(
|
|
location=[lat, lon],
|
|
popup=f"<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}",
|
|
icon=folium.Icon(icon='arrow-up', color='green')
|
|
).add_to(m)
|
|
|
|
map_html = m._repr_html_()
|
|
return render_template('index.html', map_html=map_html, selected_map="District Crop Analysis")
|
|
|
|
|
|
@app.route('/combined_analysis')
|
|
def combined_analysis():
|
|
global df
|
|
|
|
|
|
df_sampled = df.sample(frac=0.005, random_state=42)
|
|
|
|
|
|
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
|
|
|
|
|
area_heat_data = [
|
|
[row['Latitude'], row['Longitude'], row['Area']]
|
|
for _, row in df_sampled.iterrows()
|
|
]
|
|
|
|
|
|
HeatMap(
|
|
data=area_heat_data,
|
|
min_opacity=0.3,
|
|
max_opacity=0.8,
|
|
radius=15,
|
|
blur=10,
|
|
gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
|
|
).add_to(m)
|
|
|
|
|
|
production_heat_data = [
|
|
[row['Latitude'], row['Longitude'], row['Production']]
|
|
for _, row in df_sampled.iterrows()
|
|
]
|
|
|
|
|
|
HeatMap(
|
|
data=production_heat_data,
|
|
min_opacity=0.3,
|
|
max_opacity=0.8,
|
|
radius=15,
|
|
blur=10,
|
|
gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
|
|
).add_to(m)
|
|
|
|
|
|
season_colors = {
|
|
'Kharif': 'purple',
|
|
'Rabi': 'orange',
|
|
'Rabi': 'cyan',
|
|
'Winter':'Yellow',
|
|
'Summer':'Green',
|
|
'Whole Year':'Red'
|
|
}
|
|
|
|
for _, row in df_sampled.iterrows():
|
|
season = row['Season']
|
|
color = season_colors.get(season, 'gray')
|
|
folium.CircleMarker(
|
|
location=[row['Latitude'], row['Longitude']],
|
|
radius=5,
|
|
color=color,
|
|
fill=True,
|
|
fill_opacity=0.7,
|
|
tooltip=(f"District: {row['District']}<br>"
|
|
f"Season: {row['Season']}<br>"
|
|
f"Area: {row['Area']}<br>"
|
|
f"Production: {row['Production']}")
|
|
).add_to(m)
|
|
|
|
|
|
map_html = m._repr_html_()
|
|
|
|
|
|
return render_template('index.html', map_html=map_html, selected_map="Combined Area & Production Heatmaps")
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True)
|
|
|