Rajkhanke007's picture
Update app.py
e5db78b verified
raw
history blame
7.27 kB
from flask import Flask, render_template, request
import folium
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
import pandas as pd
app = Flask(__name__)
# Load the dataset
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']
@app.route('/')
def home():
return render_template('index.html', map_html='', selected_map='Home')
@app.route('/production_analysis', methods=['GET', 'POST'])
def production_analysis():
crop_options = df['Crop'].unique().tolist()
selected_crop = request.form.get('crop_type') if request.method == 'POST' else None
if not selected_crop:
return render_template('index.html', map_html='', selected_map='Production Analysis',
crop_options=crop_options, selected_crop=None)
crop_data = df[df['Crop'] == selected_crop]
if crop_data.empty:
return render_template('index.html', map_html='', selected_map='No Data Available',
crop_options=crop_options, selected_crop=selected_crop)
time_index = crop_data['Crop_Year'].unique()
heatmap_data = [[
[row['Latitude'], row['Longitude']]
for _, row in crop_data[crop_data['Crop_Year'] == year].dropna().iterrows()
]
for year in time_index
]
for year, data in zip(time_index, heatmap_data):
print(f'Year: {year}, Data: {data}')
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
heatmap = HeatMapWithTime(
heatmap_data,
index=[str(year) for year in time_index],
auto_play=True,
max_opacity=0.6
)
heatmap.add_to(m)
map_html = m._repr_html_()
return render_template('index.html', map_html=map_html, selected_map='Production Heatmap Analysis',
crop_options=crop_options, selected_crop=selected_crop)
@app.route('/heatmap_analysis')
def heatmap_analysis():
global df
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
fg = folium.FeatureGroup(name='Crops')
m.add_child(fg)
df_sampled = df.sample(frac=0.005, random_state=42)
for crop in df_sampled['Crop'].unique():
subgroup = FeatureGroupSubGroup(fg, crop)
m.add_child(subgroup)
crop_data = df_sampled[df_sampled['Crop'] == crop]
heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()]
HeatMap(heatmap_data).add_to(subgroup)
folium.LayerControl(collapsed=False).add_to(m)
map_html = m._repr_html_()
return render_template('index.html', map_html=map_html, selected_map='Crop Heatmap Analysis')
@app.route('/season_analysis')
def season_analysis():
global df
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
df_sampled = df.sample(frac=0.005, random_state=42)
top_crops = {}
for _, row in df_sampled.iterrows():
lat_lon = (row['Latitude'], row['Longitude'])
crop = row['Crop']
production = row['Production']
if lat_lon not in top_crops:
top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']}
if crop not in top_crops[lat_lon]['Crops']:
top_crops[lat_lon]['Crops'][crop] = 0
top_crops[lat_lon]['Crops'][crop] += production
for location, data in top_crops.items():
top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]
season_colors = {
'Kharif': 'orange',
'Rabi': 'green',
'Winter': 'blue',
'Autumn': 'pink',
'Summer': 'yellow',
'Whole Year': 'red'
}
for (latitude, longitude), data in top_crops.items():
season = data['Season']
top_crop_list = data['Crops']
area = data['Area']
top_crops_str = '<br>'.join([f'{crop[0]}: {crop[1]}' for crop in top_crop_list])
folium.CircleMarker(
location=[latitude, longitude],
radius=7,
color=season_colors.get(season, 'gray'),
fill=True,
fill_color=season_colors.get(season, 'gray'),
fill_opacity=0.7,
tooltip=(f'Latitude: {latitude}<br>'
f'Longitude: {longitude}<br>'
f'Season: {season}<br>'
f'Area: {area}<br>'
f'Top 5 Crops:<br>{top_crops_str}')
).add_to(m)
map_html = m._repr_html_()
return render_template('index.html', map_html=map_html, selected_map='Season Analysis')
@app.route('/crop_analysis')
def crop_analysis():
global df
df_sampled = df.sample(frac=0.005, random_state=42)
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
for district in df_sampled['District'].unique():
district_data = df_sampled[df_sampled['District'] == district]
top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist()
lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude']
folium.Marker(
location=[lat, lon],
popup=f'<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}',
icon=folium.Icon(icon='arrow-up', color='green')
).add_to(m)
map_html = m._repr_html_()
return render_template('index.html', map_html=map_html, selected_map='District Crop Analysis')
@app.route('/combined_analysis')
def combined_analysis():
global df
df_sampled = df.sample(frac=0.005, random_state=42)
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
area_heat_data = [
[row['Latitude'], row['Longitude'], row['Area']]
for _, row in df_sampled.iterrows()
]
HeatMap(
data=area_heat_data,
min_opacity=0.3,
max_opacity=0.8,
radius=15,
blur=10,
gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
).add_to(m)
production_heat_data = [
[row['Latitude'], row['Longitude'], row['Production']]
for _, row in df_sampled.iterrows()
]
HeatMap(
data=production_heat_data,
min_opacity=0.3,
max_opacity=0.8,
radius=15,
blur=10,
gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
).add_to(m)
season_colors = {
'Kharif': 'purple',
'Rabi': 'orange',
'Winter': 'Yellow',
'Summer': 'Green',
'Whole Year': 'Red'
}
for _, row in df_sampled.iterrows():
season = row['Season']
color = season_colors.get(season, 'gray')
folium.CircleMarker(
location=[row['Latitude'], row['Longitude'],
radius=5,
color=color,
fill=True,
fill_opacity=0.7,
tooltip=(f'District: {row['District']}<br>'
f'Season: {row['Season']}<br>'
f'Area: {row['Area']}<br>'
f'Production: {row['Production']}')
).add_to(m)
map_html = m._repr_html_()
return render_template('index.html', map_html=map_html, selected_map='Combined Area & Production Heatmaps')
if __name__ == '__main__':
app.run(port=7860, host='0.0.0.0')