Spaces:
Sleeping
Sleeping
File size: 1,191 Bytes
c700888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import warnings
warnings.simplefilter("ignore")
tokenizer = AutoTokenizer.from_pretrained("Unbabel/TowerBase-13B-v0.1")
model = AutoModelForCausalLM.from_pretrained("Unbabel/TowerBase-13B-v0.1", device_map="auto", load_in_4bit=True)
languages = ["English", "Spanish", "Vietnamese", "French", "Portuguese"]
def translate_text(source_lang, target_lang, text):
input_text = f"{source_lang}: {text}\n{target_lang}:"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_text
def main():
st.title("Language Translator")
source_lang = st.selectbox("Choose source language:", languages)
target_lang = st.selectbox("Choose target language:", languages)
text = st.text_area(f"Enter text in {source_lang}:", "")
if st.button("Translate"):
translated_text = translate_text(source_lang, target_lang, text)
st.text_area(f"Translation in {target_lang}:", translated_text)
if __name__ == "__main__":
main()
|