|
import os |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain_openai import OpenAI |
|
import gradio as gr |
|
|
|
|
|
def read_txt(file_path): |
|
with open(file_path, "r") as file: |
|
text = file.read() |
|
return text |
|
|
|
|
|
file_path = 'lawsofpower.txt' |
|
text_file_path = 'lawsofpower.txt' |
|
|
|
user_query = read_txt(text_file_path) |
|
|
|
|
|
char_text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) |
|
text_chunks = char_text_splitter.split_text(user_query) |
|
|
|
|
|
openai_api_key = "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" |
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) |
|
|
|
|
|
docsearch = FAISS.from_texts(text_chunks, embeddings) |
|
|
|
|
|
llm = OpenAI(openai_api_key=openai_api_key) |
|
chain = load_qa_chain(llm, chain_type="stuff") |
|
|
|
|
|
def chatbot_interface(input_text): |
|
docs = docsearch.similarity_search(input_text) |
|
response = chain.run(input_documents=docs, question=input_text) |
|
return response |
|
|
|
iface = gr.Interface(fn=chatbot_interface, inputs="text", outputs="text") |
|
iface.launch() |
|
|