Spaces:
Runtime error
Runtime error
File size: 5,696 Bytes
7d8f76d efd6e56 d099ce5 efd6e56 7d8f76d d1de822 051c974 d1de822 051c974 d1de822 051c974 d1de822 051c974 d1de822 051c974 d099ce5 7d8f76d d1de822 d099ce5 d1de822 f5c44a6 d1de822 d4a060a d1de822 d4a060a d1de822 4d73b25 d099ce5 d1de822 d099ce5 d1de822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import torch
import whisper
from whisper.utils import write_vtt
import requests
from pytube import YouTube
### ββββββββββββββββββββββββββββββββββββββββ
title="Transcript PDF"
### ββββββββββββββββββββββββββββββββββββββββ
whisper_model = whisper.load_model("medium")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def transcribe(audio):
print("""
β
Sending audio to Whisper ...
β
""")
#audio = whisper.load_audio(audio)
#audio = whisper.pad_or_trim(audio)
#mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
#_, probs = whisper_model.detect_language(mel)
#transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
#translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
#transcription = whisper.decode(whisper_model, mel, transcript_options)
#translation = whisper.decode(whisper_model, mel, translate_options)
result = whisper_model.transcribe(audio)
#print("Language Spoken: " + transcription.language)
#print("Transcript: " + transcription.text)
#print("Translated: " + translation.text)
with open('sub.vtt', "w") as f:
write_vtt(result["segments"], file=f)
return result["text"], "sub.vtt"
def transcribe_upload(audio):
return transcribe(audio)
def transcribe_yt(link):
yt = YouTube(link)
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3")
return transcribe(path)
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 880px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css = css) as demo:
gr.Markdown("""
## Transcript Generator
""")
gr.HTML('''
<p style="margin-bottom: 10px">
Save Transcripts of videos as PDF with the help of Whisper, which is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification.
</p>
''')
with gr.Column():
#gr.Markdown(""" ### Record audio """)
with gr.Tab("Youtube Link"):
yt_input = gr.Textbox(label = 'Youtube Link')
transcribe_audio_yt = gr.Button('Transcribe')
with gr.Tab("Upload as File"):
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
transcribe_audio_u = gr.Button('Transcribe')
with gr.Row():
transcript_output = gr.Textbox(label="Transcript", lines = 20)
transcript_file = gr.File()
transcribe_audio_yt.click(transcribe_yt, inputs = yt_input, outputs = [transcript_output, transcript_file])
transcribe_audio_u.click(transcribe_upload, inputs = audio_input_u, outputs = [transcript_output, transcript_file])
gr.HTML('''
<div class="footer">
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
</p>
</div>
''')
demo.queue()
demo.launch() |