Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, Request
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel, Field
|
@@ -30,6 +31,14 @@ app.add_middleware(
|
|
30 |
BASE_MODEL_PATH = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
31 |
ADAPTER_PATH = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def load_model_and_tokenizer():
|
34 |
"""Load the model, tokenizer, and adapter weights."""
|
35 |
try:
|
@@ -38,11 +47,28 @@ def load_model_and_tokenizer():
|
|
38 |
BASE_MODEL_PATH,
|
39 |
torch_dtype=torch.float16,
|
40 |
trust_remote_code=True,
|
41 |
-
device_map="auto"
|
|
|
42 |
)
|
43 |
|
44 |
logger.info("Loading tokenizer...")
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
logger.info("Downloading adapter weights...")
|
48 |
adapter_path_local = snapshot_download(repo_id=ADAPTER_PATH)
|
@@ -71,41 +97,58 @@ except Exception as e:
|
|
71 |
def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
|
72 |
"""Generate a response from the model based on an instruction."""
|
73 |
try:
|
74 |
-
|
|
|
|
|
75 |
|
76 |
# Encode input with truncation
|
77 |
-
inputs = tokenizer
|
78 |
-
|
79 |
return_tensors="pt",
|
80 |
truncation=True,
|
81 |
-
max_length=tokenizer.model_max_length
|
|
|
|
|
82 |
).to(model.device)
|
83 |
|
84 |
-
logger.info(f"Input shape: {inputs.shape}")
|
85 |
|
86 |
-
# Create attention mask
|
87 |
-
attention_mask = torch.ones(inputs.shape, device=model.device)
|
88 |
-
|
89 |
# Generate response
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
logger.info(f"Output shape: {outputs.shape}")
|
102 |
|
103 |
-
# Decode
|
104 |
-
response = tokenizer.decode(
|
105 |
-
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
except Exception as e:
|
110 |
logger.error(f"Error generating response: {e}", exc_info=True)
|
111 |
raise ValueError(f"Error generating response: {e}")
|
@@ -127,11 +170,6 @@ async def generate_text(input: ModelInput, request: Request):
|
|
127 |
max_new_tokens=input.max_new_tokens
|
128 |
)
|
129 |
|
130 |
-
if not response:
|
131 |
-
logger.warning("Generated empty response")
|
132 |
-
return {"generated_text": "", "warning": "Empty response generated"}
|
133 |
-
|
134 |
-
logger.info(f"Generated response length: {len(response)}")
|
135 |
return {"generated_text": response}
|
136 |
except Exception as e:
|
137 |
logger.error(f"Error in generate_text endpoint: {e}", exc_info=True)
|
@@ -148,5 +186,10 @@ async def health_check():
|
|
148 |
return {
|
149 |
"status": "healthy",
|
150 |
"model_loaded": model is not None and tokenizer is not None,
|
151 |
-
"model_device": str(next(model.parameters()).device) if model else None
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# server.py
|
2 |
from fastapi import FastAPI, HTTPException, Request
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from pydantic import BaseModel, Field
|
|
|
31 |
BASE_MODEL_PATH = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
32 |
ADAPTER_PATH = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
33 |
|
34 |
+
def format_prompt(instruction):
|
35 |
+
"""Format the prompt according to the model's expected format."""
|
36 |
+
return f"""### Instruction:
|
37 |
+
{instruction}
|
38 |
+
|
39 |
+
### Response:
|
40 |
+
"""
|
41 |
+
|
42 |
def load_model_and_tokenizer():
|
43 |
"""Load the model, tokenizer, and adapter weights."""
|
44 |
try:
|
|
|
47 |
BASE_MODEL_PATH,
|
48 |
torch_dtype=torch.float16,
|
49 |
trust_remote_code=True,
|
50 |
+
device_map="auto",
|
51 |
+
use_cache=True
|
52 |
)
|
53 |
|
54 |
logger.info("Loading tokenizer...")
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
56 |
+
BASE_MODEL_PATH,
|
57 |
+
padding_side="left",
|
58 |
+
truncation_side="left"
|
59 |
+
)
|
60 |
+
|
61 |
+
# Ensure the tokenizer has the necessary special tokens
|
62 |
+
special_tokens = {
|
63 |
+
"pad_token": "<|padding|>",
|
64 |
+
"eos_token": "</s>",
|
65 |
+
"bos_token": "<s>",
|
66 |
+
"unk_token": "<|unknown|>"
|
67 |
+
}
|
68 |
+
tokenizer.add_special_tokens(special_tokens)
|
69 |
+
|
70 |
+
# Resize the model embeddings to match the new tokenizer size
|
71 |
+
model.resize_token_embeddings(len(tokenizer))
|
72 |
|
73 |
logger.info("Downloading adapter weights...")
|
74 |
adapter_path_local = snapshot_download(repo_id=ADAPTER_PATH)
|
|
|
97 |
def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
|
98 |
"""Generate a response from the model based on an instruction."""
|
99 |
try:
|
100 |
+
# Format the prompt
|
101 |
+
formatted_prompt = format_prompt(instruction)
|
102 |
+
logger.info(f"Formatted prompt: {formatted_prompt}")
|
103 |
|
104 |
# Encode input with truncation
|
105 |
+
inputs = tokenizer(
|
106 |
+
formatted_prompt,
|
107 |
return_tensors="pt",
|
108 |
truncation=True,
|
109 |
+
max_length=tokenizer.model_max_length,
|
110 |
+
padding=True,
|
111 |
+
add_special_tokens=True
|
112 |
).to(model.device)
|
113 |
|
114 |
+
logger.info(f"Input shape: {inputs.input_ids.shape}")
|
115 |
|
|
|
|
|
|
|
116 |
# Generate response
|
117 |
+
with torch.inference_mode():
|
118 |
+
outputs = model.generate(
|
119 |
+
input_ids=inputs.input_ids,
|
120 |
+
attention_mask=inputs.attention_mask,
|
121 |
+
max_new_tokens=max_new_tokens,
|
122 |
+
temperature=0.7,
|
123 |
+
top_p=0.9,
|
124 |
+
top_k=50,
|
125 |
+
do_sample=True,
|
126 |
+
num_return_sequences=1,
|
127 |
+
pad_token_id=tokenizer.pad_token_id,
|
128 |
+
eos_token_id=tokenizer.eos_token_id,
|
129 |
+
repetition_penalty=1.1,
|
130 |
+
length_penalty=1.0,
|
131 |
+
no_repeat_ngram_size=3
|
132 |
+
)
|
133 |
|
134 |
logger.info(f"Output shape: {outputs.shape}")
|
135 |
|
136 |
+
# Decode the response
|
137 |
+
response = tokenizer.decode(
|
138 |
+
outputs[0, inputs.input_ids.shape[1]:],
|
139 |
+
skip_special_tokens=True,
|
140 |
+
clean_up_tokenization_spaces=True
|
141 |
+
)
|
142 |
|
143 |
+
response = response.strip()
|
144 |
+
logger.info(f"Generated text length: {len(response)}")
|
145 |
+
logger.info(f"Generated text preview: {response[:100]}...")
|
146 |
+
|
147 |
+
if not response:
|
148 |
+
logger.warning("Empty response generated")
|
149 |
+
raise ValueError("Model generated an empty response")
|
150 |
+
|
151 |
+
return response
|
152 |
except Exception as e:
|
153 |
logger.error(f"Error generating response: {e}", exc_info=True)
|
154 |
raise ValueError(f"Error generating response: {e}")
|
|
|
170 |
max_new_tokens=input.max_new_tokens
|
171 |
)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
173 |
return {"generated_text": response}
|
174 |
except Exception as e:
|
175 |
logger.error(f"Error in generate_text endpoint: {e}", exc_info=True)
|
|
|
186 |
return {
|
187 |
"status": "healthy",
|
188 |
"model_loaded": model is not None and tokenizer is not None,
|
189 |
+
"model_device": str(next(model.parameters()).device) if model else None,
|
190 |
+
"tokenizer_vocab_size": len(tokenizer) if tokenizer else None
|
191 |
+
}
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
import uvicorn
|
195 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
|