Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,25 @@
|
|
1 |
-
# server.py
|
2 |
from fastapi import FastAPI, HTTPException, Request
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
4 |
from pydantic import BaseModel, Field
|
5 |
-
from
|
6 |
-
import
|
7 |
-
from huggingface_hub import
|
8 |
-
from safetensors.torch import load_file
|
9 |
import logging
|
10 |
|
11 |
# Set up logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
-
class
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
app = FastAPI()
|
20 |
|
@@ -27,167 +32,81 @@ app.add_middleware(
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
"""Format the prompt according to the model's expected format."""
|
36 |
-
return f"""### Instruction:
|
37 |
-
{instruction}
|
38 |
-
|
39 |
-
### Response:
|
40 |
-
"""
|
41 |
-
|
42 |
-
def load_model_and_tokenizer():
|
43 |
-
"""Load the model, tokenizer, and adapter weights."""
|
44 |
-
try:
|
45 |
-
logger.info("Loading base model...")
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
BASE_MODEL_PATH,
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
trust_remote_code=True,
|
50 |
-
device_map="auto",
|
51 |
-
use_cache=True
|
52 |
-
)
|
53 |
-
|
54 |
-
logger.info("Loading tokenizer...")
|
55 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
56 |
-
BASE_MODEL_PATH,
|
57 |
-
padding_side="left",
|
58 |
-
truncation_side="left"
|
59 |
-
)
|
60 |
-
|
61 |
-
# Ensure the tokenizer has the necessary special tokens
|
62 |
-
special_tokens = {
|
63 |
-
"pad_token": "<|padding|>",
|
64 |
-
"eos_token": "</s>",
|
65 |
-
"bos_token": "<s>",
|
66 |
-
"unk_token": "<|unknown|>"
|
67 |
-
}
|
68 |
-
tokenizer.add_special_tokens(special_tokens)
|
69 |
-
|
70 |
-
# Resize the model embeddings to match the new tokenizer size
|
71 |
-
model.resize_token_embeddings(len(tokenizer))
|
72 |
-
|
73 |
-
logger.info("Downloading adapter weights...")
|
74 |
-
adapter_path_local = snapshot_download(repo_id=ADAPTER_PATH)
|
75 |
-
|
76 |
-
logger.info("Loading adapter weights...")
|
77 |
-
adapter_file = f"{adapter_path_local}/adapter_model.safetensors"
|
78 |
-
state_dict = load_file(adapter_file)
|
79 |
-
|
80 |
-
logger.info("Applying adapter weights...")
|
81 |
-
model.load_state_dict(state_dict, strict=False)
|
82 |
-
logger.info("Model and adapter loaded successfully!")
|
83 |
-
|
84 |
-
return model, tokenizer
|
85 |
-
except Exception as e:
|
86 |
-
logger.error(f"Error during model loading: {e}", exc_info=True)
|
87 |
-
raise
|
88 |
|
89 |
-
|
90 |
-
try:
|
91 |
-
model, tokenizer = load_model_and_tokenizer()
|
92 |
-
except Exception as e:
|
93 |
-
logger.error(f"Failed to load model at startup: {e}", exc_info=True)
|
94 |
-
model = None
|
95 |
-
tokenizer = None
|
96 |
|
97 |
-
def
|
98 |
-
"""Generate
|
99 |
try:
|
100 |
-
#
|
101 |
-
|
102 |
-
logger.info(f"Formatted prompt: {formatted_prompt}")
|
103 |
-
|
104 |
-
# Encode input with truncation
|
105 |
-
inputs = tokenizer(
|
106 |
-
formatted_prompt,
|
107 |
-
return_tensors="pt",
|
108 |
-
truncation=True,
|
109 |
-
max_length=tokenizer.model_max_length,
|
110 |
-
padding=True,
|
111 |
-
add_special_tokens=True
|
112 |
-
).to(model.device)
|
113 |
-
|
114 |
-
logger.info(f"Input shape: {inputs.input_ids.shape}")
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
top_k=50,
|
125 |
-
do_sample=True,
|
126 |
-
num_return_sequences=1,
|
127 |
-
pad_token_id=tokenizer.pad_token_id,
|
128 |
-
eos_token_id=tokenizer.eos_token_id,
|
129 |
-
repetition_penalty=1.1,
|
130 |
-
length_penalty=1.0,
|
131 |
-
no_repeat_ngram_size=3
|
132 |
-
)
|
133 |
-
|
134 |
-
logger.info(f"Output shape: {outputs.shape}")
|
135 |
-
|
136 |
-
# Decode the response
|
137 |
-
response = tokenizer.decode(
|
138 |
-
outputs[0, inputs.input_ids.shape[1]:],
|
139 |
-
skip_special_tokens=True,
|
140 |
-
clean_up_tokenization_spaces=True
|
141 |
)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
logger.warning("Empty response generated")
|
149 |
-
raise ValueError("Model generated an empty response")
|
150 |
-
|
151 |
-
return response
|
152 |
except Exception as e:
|
153 |
-
logger.error(f"Error
|
154 |
raise ValueError(f"Error generating response: {e}")
|
155 |
|
156 |
-
@app.post("/
|
157 |
-
async def
|
158 |
-
"""
|
159 |
try:
|
160 |
-
if
|
161 |
-
raise HTTPException(
|
|
|
|
|
|
|
162 |
|
163 |
-
logger.info(f"Received request from {request.client.host}")
|
164 |
-
logger.info(f"
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
)
|
172 |
-
|
173 |
-
return {"generated_text": response}
|
174 |
except Exception as e:
|
175 |
-
logger.error(f"Error in
|
176 |
raise HTTPException(status_code=500, detail=str(e))
|
177 |
|
178 |
@app.get("/")
|
179 |
async def root():
|
180 |
"""Root endpoint that returns a welcome message."""
|
181 |
-
return {
|
|
|
|
|
|
|
|
|
182 |
|
183 |
@app.get("/health")
|
184 |
async def health_check():
|
185 |
"""Health check endpoint."""
|
186 |
return {
|
187 |
"status": "healthy",
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"tokenizer_vocab_size": len(tokenizer) if tokenizer else None
|
191 |
}
|
192 |
|
193 |
if __name__ == "__main__":
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, Request
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import StreamingResponse
|
4 |
from pydantic import BaseModel, Field
|
5 |
+
from typing import List
|
6 |
+
import os
|
7 |
+
from huggingface_hub import InferenceClient
|
|
|
8 |
import logging
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
class Message(BaseModel):
|
15 |
+
role: str = Field(..., description="Role of the message sender (system/user/assistant)")
|
16 |
+
content: str = Field(..., description="Content of the message")
|
17 |
+
|
18 |
+
class ChatInput(BaseModel):
|
19 |
+
messages: List[Message] = Field(..., description="List of conversation messages")
|
20 |
+
max_tokens: int = Field(default=2048, gt=0, le=4096, description="Maximum number of tokens to generate")
|
21 |
+
temperature: float = Field(default=0.5, gt=0, le=2.0, description="Temperature for sampling")
|
22 |
+
top_p: float = Field(default=0.7, gt=0, le=1.0, description="Top-p sampling parameter")
|
23 |
|
24 |
app = FastAPI()
|
25 |
|
|
|
32 |
allow_headers=["*"],
|
33 |
)
|
34 |
|
35 |
+
# Initialize Hugging Face client
|
36 |
+
hf_client = InferenceClient(
|
37 |
+
api_key=os.getenv("HF_TOKEN"),
|
38 |
+
timeout=30
|
39 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407"
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
async def generate_stream(messages: List[Message], max_tokens: int, temperature: float, top_p: float):
|
44 |
+
"""Generate streaming response using Hugging Face Inference API."""
|
45 |
try:
|
46 |
+
# Convert messages to the format expected by the API
|
47 |
+
formatted_messages = [{"role": msg.role, "content": msg.content} for msg in messages]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Create the streaming completion
|
50 |
+
stream = hf_client.chat.completions.create(
|
51 |
+
model=MODEL_ID,
|
52 |
+
messages=formatted_messages,
|
53 |
+
temperature=temperature,
|
54 |
+
max_tokens=max_tokens,
|
55 |
+
top_p=top_p,
|
56 |
+
stream=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
+
# Stream the response chunks
|
60 |
+
for chunk in stream:
|
61 |
+
if chunk.choices[0].delta.content is not None:
|
62 |
+
yield chunk.choices[0].delta.content
|
63 |
+
|
|
|
|
|
|
|
|
|
64 |
except Exception as e:
|
65 |
+
logger.error(f"Error in generate_stream: {e}", exc_info=True)
|
66 |
raise ValueError(f"Error generating response: {e}")
|
67 |
|
68 |
+
@app.post("/chat")
|
69 |
+
async def chat_stream(input: ChatInput, request: Request):
|
70 |
+
"""Stream chat completions based on the input messages."""
|
71 |
try:
|
72 |
+
if not os.getenv("HF_TOKEN"):
|
73 |
+
raise HTTPException(
|
74 |
+
status_code=500,
|
75 |
+
detail="HF_TOKEN environment variable not set"
|
76 |
+
)
|
77 |
|
78 |
+
logger.info(f"Received chat request from {request.client.host}")
|
79 |
+
logger.info(f"Number of messages: {len(input.messages)}")
|
80 |
|
81 |
+
return StreamingResponse(
|
82 |
+
generate_stream(
|
83 |
+
messages=input.messages,
|
84 |
+
max_tokens=input.max_tokens,
|
85 |
+
temperature=input.temperature,
|
86 |
+
top_p=input.top_p
|
87 |
+
),
|
88 |
+
media_type="text/event-stream"
|
89 |
)
|
|
|
|
|
90 |
except Exception as e:
|
91 |
+
logger.error(f"Error in chat_stream endpoint: {e}", exc_info=True)
|
92 |
raise HTTPException(status_code=500, detail=str(e))
|
93 |
|
94 |
@app.get("/")
|
95 |
async def root():
|
96 |
"""Root endpoint that returns a welcome message."""
|
97 |
+
return {
|
98 |
+
"message": "Welcome to the Hugging Face Inference API Streaming Chat!",
|
99 |
+
"status": "running",
|
100 |
+
"model": MODEL_ID
|
101 |
+
}
|
102 |
|
103 |
@app.get("/health")
|
104 |
async def health_check():
|
105 |
"""Health check endpoint."""
|
106 |
return {
|
107 |
"status": "healthy",
|
108 |
+
"model": MODEL_ID,
|
109 |
+
"hf_token_set": bool(os.getenv("HF_TOKEN"))
|
|
|
110 |
}
|
111 |
|
112 |
if __name__ == "__main__":
|