File size: 7,421 Bytes
1af10cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a806ca2
 
 
 
1af10cc
 
a806ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af10cc
a806ca2
1af10cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
TutorX MCP Server

This is the main entry point for the TutorX MCP server.
"""
import base64
import os
import sys
from pathlib import Path

# Add the current directory to the Python path
current_dir = Path(__file__).parent
sys.path.insert(0, str(current_dir))

import uvicorn
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from mcp.server.fastmcp import FastMCP

# Import all tools to register them with MCP
from tools import (
    concept_tools,
    lesson_tools,
    quiz_tools,
    interaction_tools,
    ocr_tools,
    learning_path_tools
)

# Import resources
from resources import concept_graph, curriculum_standards

# Create FastAPI app
api_app = FastAPI(
    title="TutorX MCP Server",
    description="Model Context Protocol server for TutorX educational platform",
    version="1.0.0"
)

# Add CORS middleware
api_app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Import the shared mcp instance
from mcp_server.mcp_instance import mcp

# Explicitly import all tool modules so their @mcp.tool() decorators run
from mcp_server.tools import concept_tools
from mcp_server.tools import lesson_tools
from mcp_server.tools import quiz_tools
from mcp_server.tools import interaction_tools
from mcp_server.tools import ocr_tools
from mcp_server.tools import learning_path_tools
from mcp_server.tools import concept_graph_tools

# Mount the SSE transport for MCP at '/sse/' (with trailing slash)
api_app.mount("/sse", mcp.sse_app())

# Health check endpoint
@api_app.get("/health")
async def health_check():
    return {"status": "healthy", "service": "tutorx-mcp"}

# API endpoints - Concepts
@api_app.get("/api/concept_graph")
async def get_concept_graph(concept_id: str = None):
    if concept_id:
        concept = concept_graph.get_concept(concept_id)
        if not concept:
            raise HTTPException(status_code=404, detail={"error": f"Concept {concept_id} not found"})
        return concept
    return {"concepts": list(concept_graph.get_concept_graph().values())}

@api_app.get("/api/concept/{concept_id}")
async def get_concept_endpoint(concept_id: str):
    concept = concept_graph.get_concept(concept_id)
    if not concept:
        raise HTTPException(status_code=404, detail=f"Concept {concept_id} not found")
    return concept

@api_app.get("/api/concepts")
async def list_concepts():
    return concept_graph.get_all_concepts()

# API endpoints - Curriculum Standards
@api_app.get("/api/curriculum-standards")
async def get_curriculum_standards(country: str = "us"):
    return curriculum_standards.get_curriculum_standards(country)

# API endpoints - Text Interaction
@api_app.post("/api/text-interaction")
async def text_interaction_endpoint(request: dict):
    query = request.get("query")
    student_id = request.get("student_id")
    if not query or not student_id:
        raise HTTPException(status_code=400, detail="Both query and student_id are required")
    return await interaction_tools.text_interaction(query, student_id)

# API endpoints - Submission Originality Check
@api_app.post("/api/check-originality")
async def check_originality_endpoint(request: dict):
    submission = request.get("submission")
    reference_sources = request.get("reference_sources", [])
    if not submission or not isinstance(reference_sources, list):
        raise HTTPException(status_code=400, detail="submission (string) and reference_sources (array) are required")
    return await interaction_tools.check_submission_originality(submission, reference_sources)

# API endpoints - Document OCR
@api_app.post("/api/document-ocr")
async def document_ocr_endpoint(
    file: UploadFile = File(...)
):
    try:
        # Save the uploaded file to a temporary location
        import tempfile
        import os
        
        # Get the file extension
        file_extension = os.path.splitext(file.filename)[1].lower()
        
        # Create a temporary file with the same extension
        with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
            content = await file.read()
            temp_file.write(content)
            temp_file_path = temp_file.name
        
        try:
            # Upload the file to storage and get the URL
            from mcp_server.utils.azure_upload import upload_to_azure
            document_url = upload_to_azure(temp_file_path)
            
            # Process the document with OCR
            result = await ocr_tools.mistral_document_ocr(document_url)
            return result
            
        finally:
            # Clean up the temporary file
            try:
                os.unlink(temp_file_path)
            except:
                pass
                
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing document: {str(e)}")

# API endpoints - Learning Path
@api_app.post("/api/learning-path")
async def learning_path_endpoint(request: dict):
    student_id = request.get("student_id")
    concept_ids = request.get("concept_ids", [])
    student_level = request.get("student_level")
    if not student_id or not concept_ids:
        raise HTTPException(status_code=400, detail="student_id and concept_ids are required")
    return await learning_path_tools.get_learning_path(
        student_id=student_id,
        concept_ids=concept_ids,
        student_level=student_level
    )

# API endpoints - Assess Skill
from tools.concept_tools import assess_skill_tool
@api_app.post("/api/assess-skill")
async def assess_skill_endpoint(request: dict):
    student_id = request.get("student_id")
    concept_id = request.get("concept_id")
    if not student_id or not concept_id:
        raise HTTPException(status_code=400, detail="Both student_id and concept_id are required")
    return await assess_skill_tool(student_id, concept_id)

# API endpoints - Generate Lesson
from tools.lesson_tools import generate_lesson_tool
@api_app.post("/api/generate-lesson")
async def generate_lesson_endpoint(request: dict):
    topic = request.get("topic")
    grade_level = request.get("grade_level")
    duration_minutes = request.get("duration_minutes")
    if not topic or grade_level is None or duration_minutes is None:
        raise HTTPException(status_code=400, detail="topic, grade_level, and duration_minutes are required")
    return await generate_lesson_tool(topic, grade_level, duration_minutes)

# API endpoints - Generate Quiz
from tools.quiz_tools import generate_quiz_tool
@api_app.post("/api/generate-quiz")
async def generate_quiz_endpoint(request: dict):
    concept = request.get("concept", "")
    difficulty = request.get("difficulty", 2)
    if not concept or not isinstance(concept, str) or not concept.strip():
        raise HTTPException(status_code=400, detail="concept must be a non-empty string")
    if isinstance(difficulty, (int, float)):
        if difficulty <= 2:
            difficulty = "easy"
        elif difficulty <= 4:
            difficulty = "medium"
        else:
            difficulty = "hard"
    if difficulty not in ["easy", "medium", "hard"]:
        difficulty = "medium"
    return await generate_quiz_tool(concept.strip(), difficulty)

# Entrypoint for running with MCP SSE transport
if __name__ == "__main__":
    mcp.run(transport="sse")