Spaces:
Sleeping
Sleeping
File size: 19,156 Bytes
8372659 d4df2a7 8372659 15710ed 8372659 15710ed 8372659 def69a7 d4df2a7 8372659 1af10cc 8372659 d4df2a7 1af10cc d4df2a7 8372659 15710ed 8372659 bbd9cd6 1af10cc bbd9cd6 1af10cc a806ca2 1af10cc a806ca2 1af10cc a806ca2 1af10cc a806ca2 1af10cc a806ca2 1af10cc a806ca2 1af10cc a806ca2 1af10cc bbd9cd6 1af10cc 8372659 d4df2a7 8372659 bbd9cd6 a806ca2 bbd9cd6 d4df2a7 bbd9cd6 a806ca2 bbd9cd6 d4df2a7 bbd9cd6 a806ca2 bbd9cd6 8372659 1af10cc 8372659 1af10cc 8372659 1af10cc d4df2a7 8372659 d4df2a7 1af10cc 8372659 bbd9cd6 1af10cc bbd9cd6 3d56f3d bbd9cd6 8372659 a806ca2 8372659 a806ca2 8372659 a806ca2 bbd9cd6 1af10cc a806ca2 bbd9cd6 a806ca2 8372659 bbd9cd6 1af10cc bbd9cd6 3d56f3d bbd9cd6 8372659 a806ca2 8372659 a806ca2 8372659 a806ca2 15710ed a806ca2 15710ed a806ca2 15710ed a806ca2 1af10cc a806ca2 1af10cc 15710ed a806ca2 8372659 bbd9cd6 1af10cc a806ca2 1af10cc bbd9cd6 8372659 bbd9cd6 8372659 def69a7 8372659 d4df2a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
"""
Gradio web interface for the TutorX MCP Server with SSE support
"""
import os
import gradio as gr
import numpy as np
import json
from datetime import datetime
import asyncio
import aiohttp
import sseclient
import requests
# Import MCP SSE client context managers
from mcp import ClientSession
from mcp.client.sse import sse_client
# Server configuration
SERVER_URL = "http://localhost:8000/sse" # Ensure this is the SSE endpoint
# Utility functions
async def load_concept_graph(concept_id: str = None):
"""
Load and visualize the concept graph for a given concept ID.
If no concept_id is provided, returns the first available concept.
Uses call_resource for concept graph retrieval (not a tool).
Returns:
tuple: (figure, concept_details, related_concepts) or (None, error_dict, [])
"""
try:
print(f"[DEBUG] Loading concept graph for concept_id: {concept_id}")
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
result = await session.call_tool("get_concept_graph_tool", {"concept_id": concept_id} if concept_id else {})
print(f"[DEBUG] Server response: {result}")
if not result or not isinstance(result, dict):
error_msg = "Invalid server response"
print(f"[ERROR] {error_msg}")
return None, {"error": error_msg}, []
if "error" in result:
print(f"[ERROR] Server returned error: {result['error']}")
return None, {"error": result["error"]}, []
if "concepts" in result and not concept_id:
if not result["concepts"]:
error_msg = "No concepts available"
print(f"[ERROR] {error_msg}")
return None, {"error": error_msg}, []
concept = result["concepts"][0]
print(f"[DEBUG] Using first concept from list: {concept.get('id')}")
else:
concept = result.get("concept", result)
print(f"[DEBUG] Using direct concept: {concept.get('id')}")
if not isinstance(concept, dict) or not concept.get('id'):
error_msg = "Invalid concept data structure"
print(f"[ERROR] {error_msg}: {concept}")
return None, {"error": error_msg}, []
import matplotlib.pyplot as plt
import networkx as nx
G = nx.DiGraph()
G.add_node(concept["id"], label=concept["name"], type="concept")
related_concepts = []
if "related" in concept:
for rel_id in concept["related"]:
rel_result = await session.call_tool("get_concept_graph_tool", {"concept_id": rel_id})
if "error" not in rel_result:
rel_concept = rel_result.get("concept", {})
G.add_node(rel_id, label=rel_concept.get("name", rel_id), type="related")
G.add_edge(concept["id"], rel_id, relationship="related_to")
related_concepts.append([rel_id, rel_concept.get("name", ""), rel_concept.get("description", "")])
if "prerequisites" in concept:
for prereq_id in concept["prerequisites"]:
prereq_result = await session.call_tool("get_concept_graph_tool", {"concept_id": prereq_id})
if "error" not in prereq_result:
prereq_concept = prereq_result.get("concept", {})
G.add_node(prereq_id, label=prereq_concept.get("name", prereq_id), type="prerequisite")
G.add_edge(prereq_id, concept["id"], relationship="prerequisite_for")
plt.figure(figsize=(10, 8))
pos = nx.spring_layout(G)
node_colors = []
for node in G.nodes():
if G.nodes[node].get("type") == "concept":
node_colors.append("lightblue")
elif G.nodes[node].get("type") == "prerequisite":
node_colors.append("lightcoral")
else:
node_colors.append("lightgreen")
nx.draw_networkx_nodes(G, pos, node_size=2000, node_color=node_colors, alpha=0.8)
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
labels = {node: G.nodes[node].get("label", node) for node in G.nodes()}
nx.draw_networkx_labels(G, pos, labels, font_size=10, font_weight="bold")
edge_labels = {(u, v): d["relationship"] for u, v, d in G.edges(data=True)}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
plt.title(f"Concept Graph: {concept.get('name', concept_id)}")
plt.axis("off")
concept_details = concept
return plt.gcf(), concept_details, related_concepts
except Exception as e:
import traceback
traceback.print_exc()
return None, {"error": f"Failed to load concept graph: {str(e)}"}, []
# Create Gradio interface
with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 📚 TutorX Educational AI Platform")
gr.Markdown("""
An adaptive, multi-modal, and collaborative AI tutoring platform built with MCP.
This interface demonstrates the functionality of the TutorX MCP server using SSE connections.
""")
# Set a default student ID for the demo
student_id = "student_12345"
with gr.Tabs() as tabs:
# Tab 1: Core Features
with gr.Tab("Core Features"):
with gr.Blocks() as concept_graph_tab:
gr.Markdown("## Concept Graph Visualization")
with gr.Row():
with gr.Column(scale=3):
# Change from dropdown to textbox for concept input
concept_input_box = gr.Textbox(
label="Enter Concept Name",
placeholder="e.g., python, functions, oop, data_structures",
lines=1,
interactive=True
)
load_concept_btn = gr.Button("Load Concept Graph", variant="primary")
# Concept details
concept_details = gr.JSON(label="Concept Details")
# Related concepts
related_concepts = gr.Dataframe(
headers=["ID", "Name", "Description"],
datatype=["str", "str", "str"],
label="Related Concepts"
)
# Graph visualization
with gr.Column(scale=7):
graph_output = gr.Plot(label="Concept Graph")
# Button click handler
load_concept_btn.click(
fn=load_concept_graph,
inputs=[concept_input_box],
outputs=[graph_output, concept_details, related_concepts]
)
# Load default concept on tab click
concept_graph_tab.load(
fn=load_concept_graph,
inputs=[concept_input_box],
outputs=[graph_output, concept_details, related_concepts]
)
gr.Markdown("## Assessment Generation")
with gr.Row():
with gr.Column():
concept_input = gr.Textbox(
label="Enter Concept",
placeholder="e.g., Linear Equations, Photosynthesis, World War II",
lines=2
)
with gr.Row():
diff_input = gr.Slider(
minimum=1,
maximum=5,
value=2,
step=1,
label="Difficulty Level",
interactive=True
)
gen_quiz_btn = gr.Button("Generate Quiz", variant="primary")
with gr.Column():
quiz_output = gr.JSON(label="Generated Quiz")
async def on_generate_quiz(concept, difficulty):
try:
if not concept or not str(concept).strip():
return {"error": "Please enter a concept"}
try:
difficulty = int(float(difficulty))
difficulty = max(1, min(5, difficulty))
except (ValueError, TypeError):
difficulty = 3
if difficulty <= 2:
difficulty_str = "easy"
elif difficulty == 3:
difficulty_str = "medium"
else:
difficulty_str = "hard"
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
response = await session.call_tool("generate_quiz_tool", {"concept": concept.strip(), "difficulty": difficulty_str})
return response
except Exception as e:
import traceback
return {
"error": f"Error generating quiz: {str(e)}\n\n{traceback.format_exc()}"
}
gen_quiz_btn.click(
fn=on_generate_quiz,
inputs=[concept_input, diff_input],
outputs=[quiz_output],
api_name="generate_quiz"
)
# Tab 2: Advanced Features
with gr.Tab("Advanced Features"):
gr.Markdown("## Lesson Generation")
with gr.Row():
with gr.Column():
topic_input = gr.Textbox(label="Lesson Topic", value="Solving Quadratic Equations")
grade_input = gr.Slider(minimum=1, maximum=12, value=9, step=1, label="Grade Level")
duration_input = gr.Slider(minimum=15, maximum=90, value=45, step=5, label="Duration (minutes)")
gen_lesson_btn = gr.Button("Generate Lesson Plan")
with gr.Column():
lesson_output = gr.JSON(label="Lesson Plan")
async def generate_lesson_async(topic, grade, duration):
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
response = await session.call_tool("generate_lesson_tool", {"topic": topic, "grade_level": grade, "duration_minutes": duration})
return response
gen_lesson_btn.click(
fn=generate_lesson_async,
inputs=[topic_input, grade_input, duration_input],
outputs=[lesson_output]
)
gr.Markdown("## Learning Path Generation")
with gr.Row():
with gr.Column():
lp_student_id = gr.Textbox(label="Student ID", value=student_id)
lp_concept_ids = gr.Textbox(label="Concept IDs (comma-separated)", placeholder="e.g., python,functions,oop")
lp_student_level = gr.Dropdown(choices=["beginner", "intermediate", "advanced"], value="beginner", label="Student Level")
lp_btn = gr.Button("Generate Learning Path")
with gr.Column():
lp_output = gr.JSON(label="Learning Path")
async def on_generate_learning_path(student_id, concept_ids, student_level):
try:
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
result = await session.call_tool("get_learning_path", {
"student_id": student_id,
"concept_ids": [c.strip() for c in concept_ids.split(",") if c.strip()],
"student_level": student_level
})
return result
except Exception as e:
return {"error": str(e)}
lp_btn.click(
fn=on_generate_learning_path,
inputs=[lp_student_id, lp_concept_ids, lp_student_level],
outputs=[lp_output]
)
# Tab 3: Multi-Modal Interaction
with gr.Tab("Multi-Modal Interaction"):
gr.Markdown("## Text Interaction")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Ask a Question", value="How do I solve a quadratic equation?")
text_btn = gr.Button("Submit")
with gr.Column():
text_output = gr.JSON(label="Response")
async def text_interaction_async(text):
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
response = await session.call_tool("text_interaction", {"query": text, "student_id": student_id})
return response
text_btn.click(
fn=text_interaction_async,
inputs=[text_input],
outputs=[text_output]
)
# Document OCR (PDF, images, etc.)
gr.Markdown("## Document OCR & LLM Analysis")
with gr.Row():
with gr.Column():
doc_input = gr.File(label="Upload PDF or Document", file_types=[".pdf", ".jpg", ".jpeg", ".png"])
doc_ocr_btn = gr.Button("Extract Text & Analyze")
with gr.Column():
doc_output = gr.JSON(label="Document OCR & LLM Analysis")
async def upload_file_to_storage(file_path):
"""Helper function to upload file to storage API"""
try:
url = "https://storage-bucket-api.vercel.app/upload"
with open(file_path, 'rb') as f:
files = {'file': (os.path.basename(file_path), f)}
response = requests.post(url, files=files)
response.raise_for_status()
return response.json()
except Exception as e:
return {"error": f"Error uploading file to storage: {str(e)}", "success": False}
async def document_ocr_async(file):
if not file:
return {"error": "No file provided", "success": False}
try:
if isinstance(file, dict):
file_path = file.get("path", "")
else:
file_path = file
if not file_path or not os.path.exists(file_path):
return {"error": "File not found", "success": False}
# Upload file to storage API
upload_result = await upload_file_to_storage(file_path)
if not upload_result.get("success"):
return upload_result
# Get the storage URL from the upload response
storage_url = upload_result.get("storage_url")
if not storage_url:
return {"error": "No storage URL returned from upload", "success": False}
# Use the storage URL for OCR processing
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
response = await session.call_tool("mistral_document_ocr", {"document_url": storage_url})
return response
except Exception as e:
return {"error": f"Error processing document: {str(e)}", "success": False}
doc_ocr_btn.click(
fn=document_ocr_async,
inputs=[doc_input],
outputs=[doc_output]
)
# Tab 4: Analytics
with gr.Tab("Analytics"):
gr.Markdown("## Plagiarism Detection")
with gr.Row():
with gr.Column():
submission_input = gr.Textbox(
label="Student Submission",
lines=5,
value="The quadratic formula states that if ax² + bx + c = 0, then x = (-b ± √(b² - 4ac)) / 2a."
)
reference_input = gr.Textbox(
label="Reference Source",
lines=5,
value="According to the quadratic formula, for any equation in the form ax² + bx + c = 0, the solutions are x = (-b ± √(b² - 4ac)) / 2a."
)
plagiarism_btn = gr.Button("Check Originality")
with gr.Column():
plagiarism_output = gr.JSON(label="Originality Report")
async def check_plagiarism_async(submission, reference):
async with sse_client(SERVER_URL) as (sse, write):
async with ClientSession(sse, write) as session:
await session.initialize()
response = await session.call_tool("check_submission_originality", {"submission": submission, "reference_sources": [reference] if isinstance(reference, str) else reference})
return response
plagiarism_btn.click(
fn=check_plagiarism_async,
inputs=[submission_input, reference_input],
outputs=[plagiarism_output]
)
# Launch the interface
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|