Spaces:
Sleeping
Sleeping
# MCP Python SDK | |
<div align="center"> | |
<strong>Python implementation of the Model Context Protocol (MCP)</strong> | |
[![PyPI][pypi-badge]][pypi-url] | |
[![MIT licensed][mit-badge]][mit-url] | |
[![Python Version][python-badge]][python-url] | |
[![Documentation][docs-badge]][docs-url] | |
[![Specification][spec-badge]][spec-url] | |
[![GitHub Discussions][discussions-badge]][discussions-url] | |
</div> | |
<!-- omit in toc --> | |
## Table of Contents | |
- [Overview](#overview) | |
- [Installation](#installation) | |
- [Quickstart](#quickstart) | |
- [What is MCP?](#what-is-mcp) | |
- [Core Concepts](#core-concepts) | |
- [Server](#server) | |
- [Resources](#resources) | |
- [Tools](#tools) | |
- [Prompts](#prompts) | |
- [Images](#images) | |
- [Context](#context) | |
- [Running Your Server](#running-your-server) | |
- [Development Mode](#development-mode) | |
- [Claude Desktop Integration](#claude-desktop-integration) | |
- [Direct Execution](#direct-execution) | |
- [Mounting to an Existing ASGI Server](#mounting-to-an-existing-asgi-server) | |
- [Examples](#examples) | |
- [Echo Server](#echo-server) | |
- [SQLite Explorer](#sqlite-explorer) | |
- [Advanced Usage](#advanced-usage) | |
- [Low-Level Server](#low-level-server) | |
- [Writing MCP Clients](#writing-mcp-clients) | |
- [MCP Primitives](#mcp-primitives) | |
- [Server Capabilities](#server-capabilities) | |
- [Documentation](#documentation) | |
- [Contributing](#contributing) | |
- [License](#license) | |
[pypi-badge]: https://img.shields.io/pypi/v/mcp.svg | |
[pypi-url]: https://pypi.org/project/mcp/ | |
[mit-badge]: https://img.shields.io/pypi/l/mcp.svg | |
[mit-url]: https://github.com/modelcontextprotocol/python-sdk/blob/main/LICENSE | |
[python-badge]: https://img.shields.io/pypi/pyversions/mcp.svg | |
[python-url]: https://www.python.org/downloads/ | |
[docs-badge]: https://img.shields.io/badge/docs-modelcontextprotocol.io-blue.svg | |
[docs-url]: https://modelcontextprotocol.io | |
[spec-badge]: https://img.shields.io/badge/spec-spec.modelcontextprotocol.io-blue.svg | |
[spec-url]: https://spec.modelcontextprotocol.io | |
[discussions-badge]: https://img.shields.io/github/discussions/modelcontextprotocol/python-sdk | |
[discussions-url]: https://github.com/modelcontextprotocol/python-sdk/discussions | |
## Overview | |
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to: | |
- Build MCP clients that can connect to any MCP server | |
- Create MCP servers that expose resources, prompts and tools | |
- Use standard transports like stdio and SSE | |
- Handle all MCP protocol messages and lifecycle events | |
## Installation | |
### Adding MCP to your python project | |
We recommend using [uv](https://docs.astral.sh/uv/) to manage your Python projects. In a uv managed python project, add mcp to dependencies by: | |
```bash | |
uv add "mcp[cli]" | |
``` | |
Alternatively, for projects using pip for dependencies: | |
```bash | |
pip install mcp | |
``` | |
### Running the standalone MCP development tools | |
To run the mcp command with uv: | |
```bash | |
uv run mcp | |
``` | |
## Quickstart | |
Let's create a simple MCP server that exposes a calculator tool and some data: | |
```python | |
# server.py | |
from mcp.server.fastmcp import FastMCP | |
# Create an MCP server | |
mcp = FastMCP("Demo") | |
# Add an addition tool | |
@mcp.tool() | |
def add(a: int, b: int) -> int: | |
"""Add two numbers""" | |
return a + b | |
# Add a dynamic greeting resource | |
@mcp.resource("greeting://{name}") | |
def get_greeting(name: str) -> str: | |
"""Get a personalized greeting""" | |
return f"Hello, {name}!" | |
``` | |
You can install this server in [Claude Desktop](https://claude.ai/download) and interact with it right away by running: | |
```bash | |
mcp install server.py | |
``` | |
Alternatively, you can test it with the MCP Inspector: | |
```bash | |
mcp dev server.py | |
``` | |
## What is MCP? | |
The [Model Context Protocol (MCP)](https://modelcontextprotocol.io) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can: | |
- Expose data through **Resources** (think of these sort of like GET endpoints; they are used to load information into the LLM's context) | |
- Provide functionality through **Tools** (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect) | |
- Define interaction patterns through **Prompts** (reusable templates for LLM interactions) | |
- And more! | |
## Core Concepts | |
### Server | |
The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing: | |
```python | |
# Add lifespan support for startup/shutdown with strong typing | |
from contextlib import asynccontextmanager | |
from dataclasses import dataclass | |
from typing import AsyncIterator | |
from fake_database import Database # Replace with your actual DB type | |
from mcp.server.fastmcp import Context, FastMCP | |
# Create a named server | |
mcp = FastMCP("My App") | |
# Specify dependencies for deployment and development | |
mcp = FastMCP("My App", dependencies=["pandas", "numpy"]) | |
@dataclass | |
class AppContext: | |
db: Database | |
@asynccontextmanager | |
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]: | |
"""Manage application lifecycle with type-safe context""" | |
# Initialize on startup | |
db = await Database.connect() | |
try: | |
yield AppContext(db=db) | |
finally: | |
# Cleanup on shutdown | |
await db.disconnect() | |
# Pass lifespan to server | |
mcp = FastMCP("My App", lifespan=app_lifespan) | |
# Access type-safe lifespan context in tools | |
@mcp.tool() | |
def query_db(ctx: Context) -> str: | |
"""Tool that uses initialized resources""" | |
db = ctx.request_context.lifespan_context["db"] | |
return db.query() | |
``` | |
### Resources | |
Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects: | |
```python | |
from mcp.server.fastmcp import FastMCP | |
mcp = FastMCP("My App") | |
@mcp.resource("config://app") | |
def get_config() -> str: | |
"""Static configuration data""" | |
return "App configuration here" | |
@mcp.resource("users://{user_id}/profile") | |
def get_user_profile(user_id: str) -> str: | |
"""Dynamic user data""" | |
return f"Profile data for user {user_id}" | |
``` | |
### Tools | |
Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects: | |
```python | |
import httpx | |
from mcp.server.fastmcp import FastMCP | |
mcp = FastMCP("My App") | |
@mcp.tool() | |
def calculate_bmi(weight_kg: float, height_m: float) -> float: | |
"""Calculate BMI given weight in kg and height in meters""" | |
return weight_kg / (height_m**2) | |
@mcp.tool() | |
async def fetch_weather(city: str) -> str: | |
"""Fetch current weather for a city""" | |
async with httpx.AsyncClient() as client: | |
response = await client.get(f"https://api.weather.com/{city}") | |
return response.text | |
``` | |
### Prompts | |
Prompts are reusable templates that help LLMs interact with your server effectively: | |
```python | |
from mcp.server.fastmcp import FastMCP | |
from mcp.server.fastmcp.prompts import base | |
mcp = FastMCP("My App") | |
@mcp.prompt() | |
def review_code(code: str) -> str: | |
return f"Please review this code:\n\n{code}" | |
@mcp.prompt() | |
def debug_error(error: str) -> list[base.Message]: | |
return [ | |
base.UserMessage("I'm seeing this error:"), | |
base.UserMessage(error), | |
base.AssistantMessage("I'll help debug that. What have you tried so far?"), | |
] | |
``` | |
### Images | |
FastMCP provides an `Image` class that automatically handles image data: | |
```python | |
from mcp.server.fastmcp import FastMCP, Image | |
from PIL import Image as PILImage | |
mcp = FastMCP("My App") | |
@mcp.tool() | |
def create_thumbnail(image_path: str) -> Image: | |
"""Create a thumbnail from an image""" | |
img = PILImage.open(image_path) | |
img.thumbnail((100, 100)) | |
return Image(data=img.tobytes(), format="png") | |
``` | |
### Context | |
The Context object gives your tools and resources access to MCP capabilities: | |
```python | |
from mcp.server.fastmcp import FastMCP, Context | |
mcp = FastMCP("My App") | |
@mcp.tool() | |
async def long_task(files: list[str], ctx: Context) -> str: | |
"""Process multiple files with progress tracking""" | |
for i, file in enumerate(files): | |
ctx.info(f"Processing {file}") | |
await ctx.report_progress(i, len(files)) | |
data, mime_type = await ctx.read_resource(f"file://{file}") | |
return "Processing complete" | |
``` | |
## Running Your Server | |
### Development Mode | |
The fastest way to test and debug your server is with the MCP Inspector: | |
```bash | |
mcp dev server.py | |
# Add dependencies | |
mcp dev server.py --with pandas --with numpy | |
# Mount local code | |
mcp dev server.py --with-editable . | |
``` | |
### Claude Desktop Integration | |
Once your server is ready, install it in Claude Desktop: | |
```bash | |
mcp install server.py | |
# Custom name | |
mcp install server.py --name "My Analytics Server" | |
# Environment variables | |
mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://... | |
mcp install server.py -f .env | |
``` | |
### Direct Execution | |
For advanced scenarios like custom deployments: | |
```python | |
from mcp.server.fastmcp import FastMCP | |
mcp = FastMCP("My App") | |
if __name__ == "__main__": | |
mcp.run() | |
``` | |
Run it with: | |
```bash | |
python server.py | |
# or | |
mcp run server.py | |
``` | |
### Mounting to an Existing ASGI Server | |
You can mount the SSE server to an existing ASGI server using the `sse_app` method. This allows you to integrate the SSE server with other ASGI applications. | |
```python | |
from starlette.applications import Starlette | |
from starlette.routes import Mount, Host | |
from mcp.server.fastmcp import FastMCP | |
mcp = FastMCP("My App") | |
# Mount the SSE server to the existing ASGI server | |
app = Starlette( | |
routes=[ | |
Mount('/', app=mcp.sse_app()), | |
] | |
) | |
# or dynamically mount as host | |
app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app())) | |
``` | |
For more information on mounting applications in Starlette, see the [Starlette documentation](https://www.starlette.io/routing/#submounting-routes). | |
## Examples | |
### Echo Server | |
A simple server demonstrating resources, tools, and prompts: | |
```python | |
from mcp.server.fastmcp import FastMCP | |
mcp = FastMCP("Echo") | |
@mcp.resource("echo://{message}") | |
def echo_resource(message: str) -> str: | |
"""Echo a message as a resource""" | |
return f"Resource echo: {message}" | |
@mcp.tool() | |
def echo_tool(message: str) -> str: | |
"""Echo a message as a tool""" | |
return f"Tool echo: {message}" | |
@mcp.prompt() | |
def echo_prompt(message: str) -> str: | |
"""Create an echo prompt""" | |
return f"Please process this message: {message}" | |
``` | |
### SQLite Explorer | |
A more complex example showing database integration: | |
```python | |
import sqlite3 | |
from mcp.server.fastmcp import FastMCP | |
mcp = FastMCP("SQLite Explorer") | |
@mcp.resource("schema://main") | |
def get_schema() -> str: | |
"""Provide the database schema as a resource""" | |
conn = sqlite3.connect("database.db") | |
schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall() | |
return "\n".join(sql[0] for sql in schema if sql[0]) | |
@mcp.tool() | |
def query_data(sql: str) -> str: | |
"""Execute SQL queries safely""" | |
conn = sqlite3.connect("database.db") | |
try: | |
result = conn.execute(sql).fetchall() | |
return "\n".join(str(row) for row in result) | |
except Exception as e: | |
return f"Error: {str(e)}" | |
``` | |
## Advanced Usage | |
### Low-Level Server | |
For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API: | |
```python | |
from contextlib import asynccontextmanager | |
from typing import AsyncIterator | |
from fake_database import Database # Replace with your actual DB type | |
from mcp.server import Server | |
@asynccontextmanager | |
async def server_lifespan(server: Server) -> AsyncIterator[dict]: | |
"""Manage server startup and shutdown lifecycle.""" | |
# Initialize resources on startup | |
db = await Database.connect() | |
try: | |
yield {"db": db} | |
finally: | |
# Clean up on shutdown | |
await db.disconnect() | |
# Pass lifespan to server | |
server = Server("example-server", lifespan=server_lifespan) | |
# Access lifespan context in handlers | |
@server.call_tool() | |
async def query_db(name: str, arguments: dict) -> list: | |
ctx = server.request_context | |
db = ctx.lifespan_context["db"] | |
return await db.query(arguments["query"]) | |
``` | |
The lifespan API provides: | |
- A way to initialize resources when the server starts and clean them up when it stops | |
- Access to initialized resources through the request context in handlers | |
- Type-safe context passing between lifespan and request handlers | |
```python | |
import mcp.server.stdio | |
import mcp.types as types | |
from mcp.server.lowlevel import NotificationOptions, Server | |
from mcp.server.models import InitializationOptions | |
# Create a server instance | |
server = Server("example-server") | |
@server.list_prompts() | |
async def handle_list_prompts() -> list[types.Prompt]: | |
return [ | |
types.Prompt( | |
name="example-prompt", | |
description="An example prompt template", | |
arguments=[ | |
types.PromptArgument( | |
name="arg1", description="Example argument", required=True | |
) | |
], | |
) | |
] | |
@server.get_prompt() | |
async def handle_get_prompt( | |
name: str, arguments: dict[str, str] | None | |
) -> types.GetPromptResult: | |
if name != "example-prompt": | |
raise ValueError(f"Unknown prompt: {name}") | |
return types.GetPromptResult( | |
description="Example prompt", | |
messages=[ | |
types.PromptMessage( | |
role="user", | |
content=types.TextContent(type="text", text="Example prompt text"), | |
) | |
], | |
) | |
async def run(): | |
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream): | |
await server.run( | |
read_stream, | |
write_stream, | |
InitializationOptions( | |
server_name="example", | |
server_version="0.1.0", | |
capabilities=server.get_capabilities( | |
notification_options=NotificationOptions(), | |
experimental_capabilities={}, | |
), | |
), | |
) | |
if __name__ == "__main__": | |
import asyncio | |
asyncio.run(run()) | |
``` | |
### Writing MCP Clients | |
The SDK provides a high-level client interface for connecting to MCP servers: | |
```python | |
from mcp import ClientSession, StdioServerParameters, types | |
from mcp.client.stdio import stdio_client | |
# Create server parameters for stdio connection | |
server_params = StdioServerParameters( | |
command="python", # Executable | |
args=["example_server.py"], # Optional command line arguments | |
env=None, # Optional environment variables | |
) | |
# Optional: create a sampling callback | |
async def handle_sampling_message( | |
message: types.CreateMessageRequestParams, | |
) -> types.CreateMessageResult: | |
return types.CreateMessageResult( | |
role="assistant", | |
content=types.TextContent( | |
type="text", | |
text="Hello, world! from model", | |
), | |
model="gpt-3.5-turbo", | |
stopReason="endTurn", | |
) | |
async def run(): | |
async with stdio_client(server_params) as (read, write): | |
async with ClientSession( | |
read, write, sampling_callback=handle_sampling_message | |
) as session: | |
# Initialize the connection | |
await session.initialize() | |
# List available prompts | |
prompts = await session.list_prompts() | |
# Get a prompt | |
prompt = await session.get_prompt( | |
"example-prompt", arguments={"arg1": "value"} | |
) | |
# List available resources | |
resources = await session.list_resources() | |
# List available tools | |
tools = await session.list_tools() | |
# Read a resource | |
content, mime_type = await session.read_resource("file://some/path") | |
# Call a tool | |
result = await session.call_tool("tool-name", arguments={"arg1": "value"}) | |
if __name__ == "__main__": | |
import asyncio | |
asyncio.run(run()) | |
``` | |
### MCP Primitives | |
The MCP protocol defines three core primitives that servers can implement: | |
| Primitive | Control | Description | Example Use | | |
|-----------|-----------------------|-----------------------------------------------------|------------------------------| | |
| Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options | | |
| Resources | Application-controlled| Contextual data managed by the client application | File contents, API responses | | |
| Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates | | |
### Server Capabilities | |
MCP servers declare capabilities during initialization: | |
| Capability | Feature Flag | Description | | |
|-------------|------------------------------|------------------------------------| | |
| `prompts` | `listChanged` | Prompt template management | | |
| `resources` | `subscribe`<br/>`listChanged`| Resource exposure and updates | | |
| `tools` | `listChanged` | Tool discovery and execution | | |
| `logging` | - | Server logging configuration | | |
| `completion`| - | Argument completion suggestions | | |
## Documentation | |
- [Model Context Protocol documentation](https://modelcontextprotocol.io) | |
- [Model Context Protocol specification](https://spec.modelcontextprotocol.io) | |
- [Officially supported servers](https://github.com/modelcontextprotocol/servers) | |
## Contributing | |
We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the [contributing guide](CONTRIBUTING.md) to get started. | |
## License | |
This project is licensed under the MIT License - see the LICENSE file for details. |