TutorX-MCP / mcp_server /tools /interaction_tools.py
Meet Patel
Refactor TutorX MCP server to integrate Mistral OCR for document processing, update concept graph tools for LLM-driven responses, and enhance learning path generation with Gemini. Transitioned various tools to utilize LLM for improved educational interactions and streamlined API responses.
a806ca2
raw
history blame
2 kB
"""
Text interaction and submission checking tools for TutorX.
"""
import re
from difflib import SequenceMatcher
from typing import Dict, Any, List, Optional
from mcp_server.mcp_instance import mcp
from mcp_server.model.gemini_flash import GeminiFlash
import json
MODEL = GeminiFlash()
def calculate_similarity(text1: str, text2: str) -> float:
"""Calculate the similarity ratio between two texts."""
return 0.0 # No longer used, LLM-driven
@mcp.tool()
async def text_interaction(query: str, student_id: str) -> dict:
"""
Process a text query from a student and provide an educational response, fully LLM-driven.
Use Gemini to generate a JSON object with a response and suggested actions/resources.
"""
prompt = (
f"A student (ID: {student_id}) asked: '{query}'. "
f"Return a JSON object with fields: response (string), suggested_actions (list of strings), and suggested_resources (list of strings)."
)
llm_response = await MODEL.generate_text(prompt)
try:
data = json.loads(llm_response)
except Exception:
data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
return data
@mcp.tool()
async def check_submission_originality(submission: str, reference_sources: list) -> dict:
"""
Check a student's submission for potential plagiarism, fully LLM-driven.
Use Gemini to generate a JSON object with originality_score (0-1), is_original (bool), and recommendations (list of strings).
"""
prompt = (
f"Given the following student submission: '{submission}' and reference sources: {reference_sources}, "
f"return a JSON object with fields: originality_score (float 0-1), is_original (bool), and recommendations (list of strings)."
)
llm_response = await MODEL.generate_text(prompt)
try:
data = json.loads(llm_response)
except Exception:
data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
return data