TutorX-MCP / tests /ocr_app.py
Meet Patel
Refactor TutorX MCP server to integrate Mistral OCR for document processing, update concept graph tools for LLM-driven responses, and enhance learning path generation with Gemini. Transitioned various tools to utilize LLM for improved educational interactions and streamlined API responses.
a806ca2
"""
Gradio app for document OCR processing with Mistral OCR.
Features:
- File upload to storage API
- Document processing using Mistral OCR
- Display of OCR results
"""
import os
import requests
import gradio as gr
import asyncio
import json
import tempfile
from typing import Dict, Any, Optional
from pathlib import Path
# Mistral AI
from mistralai import Mistral
# API Configuration
STORAGE_API_URL = "https://storage-bucket-api.vercel.app/upload"
MISTRAL_API_KEY = "5oHGQTYDGD3ecQZSqdLsr5ZL4nOsfGYj" # In production, use environment variables
# Initialize Mistral client
client = Mistral(api_key=MISTRAL_API_KEY)
class MistralOCRProcessor:
"""Handles document OCR processing using Mistral AI"""
def __init__(self, client: Mistral = None):
self.client = client or Mistral(api_key=MISTRAL_API_KEY)
async def process_document(self, document_path: str) -> Dict[str, Any]:
"""
Process a document using Mistral OCR
Args:
document_path: Local path to the document to process
Returns:
Dict containing OCR results or error information
"""
try:
# For local files, we need to upload to a temporary URL first
upload_result = await StorageManager().upload_file(document_path)
if not upload_result.get("success"):
return {
"success": False,
"result": None,
"error": f"Upload failed: {upload_result.get('error')}"
}
document_url = upload_result.get("storage_url")
if not document_url:
return {
"success": False,
"result": None,
"error": "No storage URL returned from upload"
}
# Process with Mistral OCR
ocr_response = self.client.ocr.process(
model="mistral-ocr-latest",
document={
"type": "document_url",
"document_url": document_url
},
include_image_base64=True
)
# Convert response to dict if it's a Pydantic model
if hasattr(ocr_response, 'model_dump'):
result = ocr_response.model_dump()
else:
result = ocr_response
return {
"success": True,
"result": result,
"document_url": document_url,
"error": None
}
except Exception as e:
return {
"success": False,
"result": None,
"error": f"OCR processing error: {str(e)}"
}
class StorageManager:
"""Handles file uploads to the storage service"""
def __init__(self, api_url: str = STORAGE_API_URL):
self.api_url = api_url
async def upload_file(self, file_path: str) -> Dict[str, Any]:
"""
Upload a file to the storage service
Args:
file_path: Path to the file to upload
Returns:
Dict containing upload result or error information
"""
try:
with open(file_path, 'rb') as f:
files = {'file': (os.path.basename(file_path), f)}
response = requests.post(self.api_url, files=files)
response.raise_for_status()
result = response.json()
if not result.get('success'):
raise Exception(result.get('message', 'Upload failed'))
return {
"success": True,
"storage_url": result.get('storage_url'),
"original_filename": result.get('original_filename'),
"file_size": result.get('file_size'),
"error": None
}
except Exception as e:
return {
"success": False,
"storage_url": None,
"original_filename": os.path.basename(file_path),
"file_size": os.path.getsize(file_path) if os.path.exists(file_path) else 0,
"error": f"Upload failed: {str(e)}"
}
# Initialize processors
ocr_processor = MistralOCRProcessor()
storage_manager = StorageManager()
async def process_document_ocr(file_path: str) -> Dict[str, Any]:
"""
Process a document through the complete OCR pipeline
Args:
file_path: Path to the document file
Returns:
Dict containing processing results
"""
# Process with Mistral OCR (handles upload internally)
result = await ocr_processor.process_document(file_path)
if not result.get("success"):
return {
"success": False,
"upload": {"success": False},
"ocr": None,
"error": result.get("error", "Unknown error")
}
# Get the original filename from the file path
original_filename = Path(file_path).name
file_size = os.path.getsize(file_path)
return {
"success": True,
"upload": {
"success": True,
"storage_url": result.get("document_url"),
"original_filename": original_filename,
"file_size": file_size
},
"ocr": result.get("result"),
"error": None,
"storage_url": result.get("document_url")
}
# Gradio Interface
def create_gradio_interface():
"""Create and return the Gradio interface"""
with gr.Blocks(title="Document OCR Processor", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Document OCR Processor")
gr.Markdown("Upload a document (PDF, JPG, JPEG, PNG) to process with Mistral OCR")
with gr.Row():
with gr.Column(scale=2):
file_input = gr.File(label="Upload Document", type="filepath")
process_btn = gr.Button("Process Document", variant="primary")
with gr.Accordion("Debug Info", open=False):
status_text = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("OCR Results"):
ocr_output = gr.JSON(label="OCR Output")
with gr.TabItem("Extracted Text"):
text_output = gr.Textbox(label="Extracted Text", lines=20, max_lines=50)
with gr.TabItem("Upload Info"):
upload_info = gr.JSON(label="Upload Information")
def update_status(message):
return message
async def process_file(file_path):
try:
status = "Starting document processing..."
yield {status_text: update_status(status)}
# Process the document
result = await process_document_ocr(file_path)
if not result["success"]:
error_msg = result.get('error', 'Unknown error')
yield {
status_text: update_status(f"❌ {error_msg}"),
ocr_output: None,
text_output: "",
upload_info: None
}
return
# Extract text from OCR result
extracted_text = ""
ocr_data = result.get("ocr", {})
# Handle different OCR result formats
if isinstance(ocr_data, dict):
if "text" in ocr_data:
extracted_text = ocr_data["text"]
elif "pages" in ocr_data and isinstance(ocr_data["pages"], list):
extracted_text = "\n\n".join(
page.get("text", "")
for page in ocr_data["pages"]
if page and isinstance(page, dict) and "text" in page
)
# Prepare upload info
upload_info_data = {
"original_filename": result["upload"].get("original_filename"),
"file_size": result["upload"].get("file_size"),
"storage_url": result["upload"].get("storage_url"),
}
yield {
status_text: update_status("βœ… Document processed successfully"),
ocr_output: ocr_data,
text_output: extracted_text,
upload_info: upload_info_data
}
except Exception as e:
import traceback
error_trace = traceback.format_exc()
error_msg = f"Unexpected error: {str(e)}"
yield {
status_text: update_status(f"❌ {error_msg}"),
ocr_output: None,
text_output: "",
upload_info: None
}
# Connect the process button to the processing function
process_btn.click(
fn=process_file,
inputs=file_input,
outputs=[status_text, ocr_output, text_output, upload_info]
)
# Auto-process when a file is uploaded
file_input.change(
fn=lambda x: "Ready to process. Click 'Process Document' to continue.",
inputs=file_input,
outputs=status_text
)
return demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
# Create and launch the interface
create_gradio_interface()