Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import numpy as np | |
import torch | |
from chatterbox.src.chatterbox.tts import ChatterboxTTS | |
import gradio as gr | |
import spaces | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"🚀 Running on device: {DEVICE}") | |
# --- Global Model Initialization --- | |
MODEL = None | |
def get_or_load_model(): | |
"""Loads the ChatterboxTTS model if it hasn't been loaded already, | |
and ensures it's on the correct device.""" | |
global MODEL | |
if MODEL is None: | |
print("Model not loaded, initializing...") | |
try: | |
MODEL = ChatterboxTTS.from_pretrained(DEVICE) | |
if hasattr(MODEL, 'to') and str(MODEL.device) != DEVICE: | |
MODEL.to(DEVICE) | |
print(f"Model loaded successfully. Internal device: {getattr(MODEL, 'device', 'N/A')}") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
return MODEL | |
# Attempt to load the model at startup. | |
try: | |
get_or_load_model() | |
except Exception as e: | |
print(f"CRITICAL: Failed to load model on startup. Application may not function. Error: {e}") | |
def set_seed(seed: int): | |
"""Sets the random seed for reproducibility across torch, numpy, and random.""" | |
torch.manual_seed(seed) | |
if DEVICE == "cuda": | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
def generate_tts_audio( | |
text_input: str, | |
audio_prompt_path_input: str, | |
exaggeration_input: float, | |
temperature_input: float, | |
seed_num_input: int, | |
cfgw_input: float | |
) -> tuple[int, np.ndarray]: | |
""" | |
Generates TTS audio using the ChatterboxTTS model. | |
Args: | |
text_input: The text to synthesize (max 300 characters). | |
audio_prompt_path_input: Path to the reference audio file. | |
exaggeration_input: Exaggeration parameter for the model. | |
temperature_input: Temperature parameter for the model. | |
seed_num_input: Random seed (0 for random). | |
cfgw_input: CFG/Pace weight. | |
Returns: | |
A tuple containing the sample rate (int) and the audio waveform (numpy.ndarray). | |
""" | |
current_model = get_or_load_model() | |
if current_model is None: | |
raise RuntimeError("TTS model is not loaded.") | |
if seed_num_input != 0: | |
set_seed(int(seed_num_input)) | |
print(f"Generating audio for text: '{text_input[:50]}...'") | |
wav = current_model.generate( | |
text_input[:300], # Truncate text to max chars | |
audio_prompt_path=audio_prompt_path_input, | |
exaggeration=exaggeration_input, | |
temperature=temperature_input, | |
cfg_weight=cfgw_input, | |
) | |
print("Audio generation complete.") | |
return (current_model.sr, wav.squeeze(0).numpy()) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Chatterbox TTS Demo | |
Generate high-quality speech from text with reference audio styling. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox( | |
value="Now let's make my mum's favourite. So three mars bars into the pan. Then we add the tuna and just stir for a bit, just let the chocolate and fish infuse. A sprinkle of olive oil and some tomato ketchup. Now smell that. Oh boy this is going to be incredible.", | |
label="Text to synthesize (max chars 300)", | |
max_lines=5 | |
) | |
ref_wav = gr.Audio( | |
sources=["upload", "microphone"], | |
type="filepath", | |
label="Reference Audio File (Optional)", | |
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac" | |
) | |
exaggeration = gr.Slider( | |
0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5 | |
) | |
cfg_weight = gr.Slider( | |
0.2, 1, step=.05, label="CFG/Pace", value=0.5 | |
) | |
with gr.Accordion("More options", open=False): | |
seed_num = gr.Number(value=0, label="Random seed (0 for random)") | |
temp = gr.Slider(0.05, 5, step=.05, label="Temperature", value=.8) | |
run_btn = gr.Button("Generate", variant="primary") | |
with gr.Column(): | |
audio_output = gr.Audio(label="Output Audio") | |
run_btn.click( | |
fn=generate_tts_audio, | |
inputs=[ | |
text, | |
ref_wav, | |
exaggeration, | |
temp, | |
seed_num, | |
cfg_weight, | |
], | |
outputs=[audio_output], | |
) | |
demo.launch() |