File size: 10,035 Bytes
ab58b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d0d8c3
ab58b14
 
 
 
 
 
 
1d0d8c3
ab58b14
 
 
 
 
 
 
1d0d8c3
ab58b14
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import gradio as gr
import torch
import torch.nn as nn
from torchvision.models import resnet18
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import numpy as np
import random
from PIL import Image
import matplotlib.pyplot as plt
import io
from torch.utils.data import DataLoader
import base64

# Model architecture definition
class ResNet18_Dropout(nn.Module):
    def __init__(self, in_channels, num_classes, dropout_rate=0.3):
        super().__init__()
        self.model = resnet18(weights=None)
        self.model.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
        in_features = self.model.fc.in_features
        self.model.fc = nn.Sequential(
            nn.Dropout(dropout_rate),
            nn.Linear(in_features, num_classes)
        )
    
    def forward(self, x):
        return self.model(x)

def transform_multispectral_map(example):
    image = np.array(example["image"], dtype=np.float32)

    if image.ndim != 3 or image.shape[2] != 13:
        raise ValueError(f"Expected shape (H, W, 13), got {image.shape}")

    # Normalize
    image = image / 2750.0
    image = np.clip(image, 0, 1)

    # === DATA AUGMENTATION ===
    # Horizontal flip
    if random.random() < 0.5:
        image = np.flip(image, axis=1).copy()

    # Vertical flip
    if random.random() < 0.5:
        image = np.flip(image, axis=0).copy()

    # Rotation (by 90, 180, 270)
    if random.random() < 0.5:
        k = random.choice([1, 2, 3])
        image = np.rot90(image, k=k, axes=(0, 1)).copy()

    # === SHAPE FORMAT ===
    image = image.transpose(2, 0, 1)  # (C=13, H, W)

    return {
        "image": torch.tensor(image, dtype=torch.float32),
        "label": torch.tensor(example["label"], dtype=torch.long)
    }

# RGB conversion functions
def load_rgb_from_multispectral_sample(numpy_array):
    """
    Takes a NumPy array with 13 multispectral bands and returns a scaled RGB NumPy array.
    Equivalent to loading bands 4-3-2 and scaling as GDAL would.
    """
    # GDAL-style scaling: scale 0–2750 -> 1–255
    def scale_band(band):
        band = np.clip((band / 2750) * 255, 0, 255)
        return band.astype(np.uint8)
    
    # Bands 4 (red), 3 (green), 2 (blue) => index 3, 2, 1 in 0-based
    bands = [3, 2, 1]
    
    # Ensure the input is a NumPy array
    if not isinstance(numpy_array, np.ndarray):
        raise TypeError("Input must be a NumPy array")
    
    # Check if the array has the expected number of channels (13)
    if numpy_array.shape[-1] != 13:
        raise ValueError(f"Input array must have 13 channels, but got {numpy_array.shape[-1]}")
    
    # Extract and scale the RGB bands from the NumPy array
    rgb = np.stack([scale_band(numpy_array[:, :, b]) for b in bands], axis=-1)
    return rgb

def load_rgb_from_transformed_tensor(tensor_image):
    """
    Takes a torch.Tensor with 13 multispectral bands (C, H, W) and returns a scaled RGB NumPy array.
    """
    if not isinstance(tensor_image, torch.Tensor):
        raise TypeError("Input must be a torch.Tensor")
    if tensor_image.shape[0] != 13:
        raise ValueError(f"Expected 13 channels, got {tensor_image.shape[0]}")
    
    # Convert to NumPy (C, H, W) β†’ (H, W, C)
    np_image = tensor_image.numpy()
    np_image = np.transpose(np_image, (1, 2, 0))  # (H, W, 13)
    
    # Bands 4-3-2 β†’ index 3, 2, 1
    bands = [3, 2, 1]
    
    def scale_band(band):
        band = np.clip((band * 255), 0, 255)
        return band.astype(np.uint8)
    
    rgb = np.stack([scale_band(np_image[:, :, b]) for b in bands], axis=-1)  # (H, W, 3)
    return rgb

# Global variables for model and dataset
model = None
dataset = None
label_names = None
label2id = None
id2label = None

def load_model_and_data():
    """Load the model and dataset"""
    global model, dataset, label_names, label2id, id2label
    
    try:
        # Load dataset
        print("Loading dataset...")
        dataset = load_dataset("blanchon/EuroSAT_MSI", cache_dir="./hf_cache", streaming=False)
        dataset["test"] = dataset["test"].map(transform_multispectral_map)
        dataset["test"].set_format(type="torch", columns=["image", "label"])

        # Setup labels
        label_names = dataset["train"].features['label'].names
        label2id = {name: i for i, name in enumerate(label_names)}
        id2label = {v: k for k, v in label2id.items()}
        num_classes = len(label_names)
        
        # Load model
        print("Loading model...")
        model_path = hf_hub_download(repo_id="Rhodham96/Resnet18DropoutSentinel", filename="pytorch_model.bin")
        model = ResNet18_Dropout(in_channels=13, num_classes=num_classes)
        model.load_state_dict(torch.load(model_path, map_location='cpu'))
        model.eval()
        
        print(f"Model and dataset loaded successfully!")
        print(f"Classes: {label_names}")
        return True
        
    except Exception as e:
        print(f"Error loading model or dataset: {str(e)}")
        return False

def predict_images():
    """Process 16 random images and return results"""
    global model, dataset, id2label
    
    if model is None or dataset is None:
        return "Model or dataset not loaded. Please wait for initialization."
    
    test_dataloader = DataLoader(dataset["test"], batch_size=32, shuffle=True)

    try:
        # Get 16 random samples from validation set
        
        num_batches = 5
        collected_images = []
        collected_labels = []
        collected_preds = []
        #criterion = nn.CrossEntropyLoss()
        model.eval()
        with torch.no_grad():
            for i, batch in enumerate(test_dataloader):
                if i >= num_batches:
                    break
                images = batch['image']
                labels = batch['label']

                outputs = model(images)
                _, preds = outputs.max(1)

                collected_images.append(images.cpu())
                collected_labels.append(labels.cpu())
                collected_preds.append(preds.cpu())

        # Concatenate all samples
        images = torch.cat(collected_images)
        labels = torch.cat(collected_labels)
        preds = torch.cat(collected_preds)

        # Randomly select 10 indices
        indices = random.sample(range(len(images)), 10)

        # Prepare for plotting
        selected_images = images[indices]
        selected_labels = labels[indices]
        selected_preds = preds[indices]
        image_to_see_layers = selected_images[0]
        label_to_see_layers = selected_labels[0]
        # Plot
        fig, axes = plt.subplots(2, 5, figsize=(15, 6))
        axes = axes.flatten()

        for i in range(10):
            img = load_rgb_from_transformed_tensor(selected_images[i])

            axes[i].imshow(img)
            axes[i].axis("off")
            true_label = id2label[selected_labels[i].item()]
            pred_label = id2label[selected_preds[i].item()]
            color = "green" if pred_label == true_label else "red"
            axes[i].set_title(f"T: {true_label}\nP: {pred_label}", color=color)

        plt.tight_layout()
        
        # Convert plot to image
        buf = io.BytesIO()
        plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
        buf.seek(0)
        plt.close()
        
        # Convert to PIL Image
        result_image = Image.open(buf)
        
        # Calculate accuracy
        correct_predictions = (selected_preds == selected_labels).sum().item()
        accuracy = correct_predictions / len(selected_labels) * 100
        summary = f"Accuracy: {correct_predictions}/{len(selected_labels)} ({accuracy:.1f}%)\n"
        summary += f"Classes: {', '.join(label_names)}"

        return result_image, summary
        
    except Exception as e:
        error_msg = f"Error during prediction: {str(e)}"
        print(error_msg)
        # Return a placeholder image and error message
        placeholder = Image.new('RGB', (800, 600), color='lightgray')
        return placeholder, error_msg

def create_interface():
    """Create the Gradio interface"""
    
    # Initialize model and data
    init_success = load_model_and_data()
    
    if not init_success:
        def error_function():
            placeholder = Image.new('RGB', (800, 600), color='red')
            return placeholder, "Failed to load model or dataset. Please check the logs."
        
        interface = gr.Interface(
            fn=error_function,
            inputs=[],
            outputs=[
                gr.Image(type="pil", label="Results"),
                gr.Textbox(label="Summary")
            ],
            title="πŸ›°οΈ Satellite Image Classification - ERROR",
            description="Failed to initialize the application."
        )
        return interface
    
    # Create the main interface
    interface = gr.Interface(
        fn=predict_images,
        inputs=[],
        outputs=[
            gr.Image(type="pil", label="Classification Results (10 Random Images)"),
            gr.Textbox(label="Summary", lines=3)
        ],
        title="πŸ›°οΈ Satellite Image Classification with ResNet18",
        description="""
        This app classifies satellite images from the EuroSAT dataset using a trained ResNet18 model.
        
        **How it works:**
        - Loads 10 random satellite images from the test set
        - Each image has 13 spectral bands, converted to RGB for display
        - Shows true labels vs predicted labels
        - Green titles = correct predictions, Red titles = incorrect predictions
        
        **Dataset:** EuroSAT with 13 multispectral bands
        **Model:** ResNet18 with dropout, trained on 13-channel input
        
        Click "Generate" to process 10 new random images!
        """,
        examples=[],
        cache_examples=False,
        allow_flagging="never"
    )
    
    return interface

# Launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(share=True)