File size: 2,579 Bytes
d728dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import math
import os
import cv2
import numpy as np
import torch
import segmentation_models_pytorch as smp

def pad_to_divisible(img, div=32):
    h, w, _ = img.shape
    new_h = math.ceil(h / div) * div
    new_w = math.ceil(w / div) * div
    pad_bottom = new_h - h
    pad_right = new_w - w
    padded = cv2.copyMakeBorder(img, 0, pad_bottom, 0, pad_right, cv2.BORDER_CONSTANT, value=[0, 0, 0])
    return padded


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)

model_path = "best_unet_model_complete.pth"
if os.path.exists(model_path):
    loaded_model = torch.load(model_path, map_location=device)
    loaded_model.eval()
    print("Loaded complete model from", model_path)
else:
    raise FileNotFoundError(f"Model file not found at {model_path}")

def predict(image):
    """
    Takes an input image (as a NumPy array), pads it, performs inference,
    and returns: 
    - the padded input image,
    - the predicted mask (grayscale), and 
    - the original image with a red overlay on the predicted regions.
    """

    if image.shape[2] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
    
    
    external_image_rgb = image.copy()

    external_image_padded = pad_to_divisible(external_image_rgb, div=32)
    
    external_image_norm = external_image_padded.astype(np.float32) / 255.0
    external_tensor = torch.from_numpy(external_image_norm).permute(2, 0, 1)
    external_tensor = external_tensor.unsqueeze(0).to(device)

    with torch.no_grad():
        output = loaded_model(external_tensor)
        pred_mask = (torch.sigmoid(output) > 0.3).float()  
    pred_mask_np = pred_mask.cpu().squeeze().numpy()
    

    overlay_image = external_image_padded.astype(np.float32)
    mask_bool = pred_mask_np > 0.5
    red_color = np.array([255, 0, 0], dtype=np.float32)
    alpha = 0.5  
    overlay_image[mask_bool] = (1 - alpha) * overlay_image[mask_bool] + alpha * red_color
    overlay_image = np.clip(overlay_image, 0, 255).astype(np.uint8)

    return external_image_padded, pred_mask_np, overlay_image

demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="numpy", label="Upload Image"),
    outputs=[
        gr.Image(label="Padded Image"),
        gr.Image(label="Predicted Mask"),
        gr.Image(label="Overlay (Predicted Regions)")
    ],
    title="Wrinkle Segmentation",
    description="Upload an image to see wrinkle segmentation. The app displays the padded image, the predicted mask, and an overlay of the predicted regions in red."
)

demo.launch()