Spaces:
Sleeping
Sleeping
import gradio as gr | |
import mne | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load open-source LLM (no training needed) | |
model_name = "tiiuae/falcon-7b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto") | |
def process_eeg(file): | |
# Load EEG data using MNE | |
raw = mne.io.read_raw_fif(file.name, preload=True) | |
# Compute some features (e.g., average band powers) | |
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40) | |
alpha_power = compute_band_power(psd, freqs, 8, 12) | |
beta_power = compute_band_power(psd, freqs, 13, 30) | |
# Create a human-readable summary of features | |
data_summary = f"Alpha power: {alpha_power}, Beta power: {beta_power}. The data shows stable alpha rhythms and slightly elevated beta." | |
# Prompt the LLM | |
prompt = f"""You are a neuroscientist analyzing EEG features. | |
Data Summary: {data_summary} | |
Provide a concise, user-friendly interpretation of these findings.""" | |
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return summary | |
iface = gr.Interface( | |
fn=process_eeg, | |
inputs=gr.File(label="Upload your EEG data (FIF format)"), | |
outputs="text", | |
title="NeuroNarrative-Lite: EEG Summary", | |
description="Upload EEG data to receive a text-based summary from an open-source LLM. No training required!" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |