File size: 6,498 Bytes
cc14865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import streamlit as st
import yfinance as yf
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import twstock
from datetime import datetime, timedelta

def plot_stock_data(stock_symbols, period='1y'):
    """
    繪製股票價格圖表
    :param stock_symbols: 股票代號列表
    :param period: 時間區間
    :return: Plotly figure
    """
    # 創建子圖
    fig = make_subplots(
        rows=len(stock_symbols),
        cols=1,
        subplot_titles=[f"股價走勢: {symbol}" for symbol in stock_symbols],
        vertical_spacing=0.05,
        specs=[[{"secondary_y": True}] for _ in stock_symbols]
    )

    # 為每個股票繪製圖形
    for idx, symbol in enumerate(stock_symbols, 1):
        try:
            # 獲取股票數據
            stock = yf.Ticker(symbol)
            df = stock.history(period=period)

            if df.empty:
                st.warning(f"無法找到 {symbol} 的股票數據")
                continue

            # 添加蠟燭圖
            fig.add_trace(
                go.Candlestick(
                    x=df.index,
                    open=df['Open'],
                    high=df['High'],
                    low=df['Low'],
                    close=df['Close'],
                    name=f'{symbol} 價格'
                ),
                row=idx, col=1
            )

            # 添加成交量柱狀圖
            fig.add_trace(
                go.Bar(
                    x=df.index,
                    y=df['Volume'],
                    name=f'{symbol} 成交量',
                    opacity=0.3
                ),
                row=idx, col=1,
                secondary_y=True
            )

            # 添加移動平均線
            for ma_days in [5, 20, 60]:
                ma = df['Close'].rolling(window=ma_days).mean()
                fig.add_trace(
                    go.Scatter(
                        x=df.index,
                        y=ma,
                        name=f'{symbol} MA{ma_days}',
                        line=dict(width=1)
                    ),
                    row=idx, col=1
                )

        except Exception as e:
            st.error(f"處理 {symbol} 時發生錯誤: {str(e)}")

    # 更新布局
    fig.update_layout(
        height=400 * len(stock_symbols),
        title_text="台股分析圖",
        showlegend=True,
        xaxis_rangeslider_visible=False,
        template="plotly_white"
    )

    # 更新軸標籤
    for i in range(1, len(stock_symbols) + 1):
        fig.update_xaxes(title_text="日期", row=i, col=1)
        fig.update_yaxes(title_text="價格 (TWD)", row=i, col=1)
        fig.update_yaxes(title_text="成交量", row=i, col=1, secondary_y=True)

    return fig

def fetch_recent_stock_data(stock_code):
    """
    使用 twstock 獲取近期股票交易數據
    """
    try:
        stock = twstock.Stock(stock_code)
        recent_data = stock.fetch_31()  # 抓取最近 31 天的交易數據

        if not recent_data:
            st.warning(f"無法找到 {stock_code} 的交易數據。")
            return None

        # 將數據整理為 DataFrame 格式
        data_list = [
            {
                "Date": data.date.strftime('%Y-%m-%d'),
                "Open": data.open,
                "High": data.high,
                "Low": data.low,
                "Close": data.close,
                "Transaction": data.transaction,
                "Capacity": data.capacity,
                "Turnover": data.turnover
            }
            for data in recent_data
        ]
        df = pd.DataFrame(data_list)
        return df

    except Exception as e:
        st.error(f"發生錯誤: {e}")
        return None

def main():
    st.set_page_config(page_title="台股分析工具", page_icon=":chart_with_upwards_trend:", layout="wide")
    
    st.title("🚀 台股分析工具")

    # 側邊欄設置
    with st.sidebar:
        st.header("股票分析設定")
        
        # 股票代碼輸入
        stock_input = st.text_input(
            "股票代號 (用逗號分隔)",
            value="2330.TW,2454.TW",
            placeholder="例如: 2330.TW,2454.TW"
        )
        
        # 時間區間選擇
        period_select = st.selectbox(
            "選擇時間區間",
            ["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
            index=3  # 預設為 1y
        )

    # 股票分析頁籤
    tab1, tab2 = st.tabs(["股價走勢圖", "近期交易數據"])

    with tab1:
        # 股價走勢圖
        if st.button("繪製股價走勢圖"):
            # 處理股票代號
            stocks = [s.strip() for s in stock_input.split(',')]
            stocks = [f"{s}.TW" if not s.endswith('.TW') and s.isdigit() else s for s in stocks]
            
            # 創建圖表
            fig = plot_stock_data(stocks, period_select)
            st.plotly_chart(fig, use_container_width=True)

    with tab2:
        # 近期交易數據
        st.subheader("個股近期交易數據")
        
        single_stock_code = st.text_input(
            "請輸入股票代碼",
            placeholder="例如: 2330"
        )
        
        if st.button("查詢交易數據"):
            if single_stock_code:
                # 獲取近期股票數據
                df = fetch_recent_stock_data(single_stock_code)
                
                if df is not None:
                    # 顯示數據
                    st.dataframe(df)
                    
                    # 統計資訊
                    st.subheader("基本統計")
                    col1, col2, col3 = st.columns(3)
                    
                    with col1:
                        st.metric("平均收盤價", f"{df['Close'].mean():.2f}")
                    
                    with col2:
                        st.metric("最高價", f"{df['High'].max():.2f}")
                    
                    with col3:
                        st.metric("最低價", f"{df['Low'].min():.2f}")
                    
                    # 匯出 CSV
                    csv_data = df.to_csv(index=False).encode('utf-8-sig')
                    st.download_button(
                        label="下載CSV",
                        data=csv_data,
                        file_name=f"{single_stock_code}_recent_30days.csv",
                        mime="text/csv"
                    )

if __name__ == "__main__":
    main()