|
''' |
|
Author : Rupesh Garsondiya |
|
github : @Rupeshgarsondiya |
|
Organization : L.J university |
|
|
|
''' |
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import streamlit as st |
|
from sklearn.preprocessing import OneHotEncoder,StandardScaler |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.pipeline import Pipeline,make_pipeline |
|
from sklearn.compose import ColumnTransformer |
|
|
|
|
|
'''create class FeatureEngineering is created to perform feature engineering on the dataset''' |
|
class FeatureEngineering: |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def cleandata(self): |
|
data = pd.read_csv('Data/user_behavior_dataset.csv') |
|
|
|
data.drop('User ID',axis=1,inplace=True) |
|
|
|
'''Rename column name''' |
|
data.rename(columns={'Device Model':'P_Model','Operating System':'OS','App Usage Time (min/day)':'App_Time(hours/day)', |
|
'Screen On Time (hours/day)':'(hours/Screen_timeday)','Battery Drain (mAh/day)':'Battery_Drain(mAh/day)', |
|
'Number of Apps Installed':'Installed_app','Data Usage (MB/day)':'Data_Usage(GB/day)'},inplace=True) |
|
|
|
|
|
data['App_Time(hours/day)']=data['App_Time(hours/day)']/60 |
|
|
|
|
|
data['Data_Usage(GB/day)']=data['Data_Usage(GB/day)']/1024 |
|
|
|
return data |
|
|
|
def get_clean_data(self): |
|
df = FeatureEngineering().cleandata() |
|
print(df.head()) |
|
|
|
X = df.drop('User Behavior Class', axis=1) |
|
y = df['User Behavior Class'] |
|
|
|
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2) |
|
|
|
categorical_col = ['P_Model','OS','Gender'] |
|
categorical_transform = OneHotEncoder() |
|
|
|
numerical_col = ['Battery_Drain(mAh/day)'] |
|
numerical_transform = StandardScaler() |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
|
|
('cat', categorical_transform, categorical_col) |
|
],remainder='passthrough') |
|
|
|
|
|
pipeline = Pipeline(steps=[('preprocessor', preprocessor)]) |
|
pipeline.fit(x_train) |
|
pipeline.fit(x_test) |
|
x_train_t = pipeline.transform(x_train) |
|
x_test_t = pipeline.transform(x_test) |
|
|
|
|
|
return x_train_t,x_test_t,y_train,y_test,pipeline |
|
|
|
|
|
|
|
|
|
|