File size: 7,402 Bytes
4ebaf08
 
6528c77
4ebaf08
fd06f0b
 
 
 
 
4ebaf08
fd06f0b
 
4ebaf08
 
 
 
 
 
9b4b6b8
4ebaf08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b4b6b8
 
 
 
 
 
 
 
 
f358b3f
4ebaf08
fd06f0b
4ebaf08
 
 
 
 
fd06f0b
4ebaf08
 
 
 
 
 
 
fd06f0b
4ebaf08
 
 
 
 
 
 
 
fd06f0b
4ebaf08
 
 
 
 
 
fd06f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
9b4b6b8
fd06f0b
4ebaf08
 
 
 
6528c77
4ebaf08
6528c77
 
 
4ebaf08
9b4b6b8
6528c77
4ebaf08
 
 
 
 
 
 
 
 
 
 
 
 
daf2b71
 
 
 
 
 
 
 
 
 
 
 
 
4ebaf08
daf2b71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b4b6b8
daf2b71
 
 
f358b3f
daf2b71
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import json
from visualization.bow_visualizer import process_and_visualize_analysis

# Import analysis modules
# Uncomment these when implemented
# from processors.topic_modeling import extract_topics, compare_topics
# from processors.ngram_analysis import compare_ngrams
# from processors.bias_detection import compare_bias
from processors.bow_analysis import compare_bow
# from processors.metrics import calculate_similarity
# from processors.diff_highlighter import highlight_differences

def create_analysis_screen():
    """
    Create the analysis options screen
    
    Returns:
        tuple: (analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider)
    """
    with gr.Column() as analysis_screen:
        gr.Markdown("## Analysis Options")
        gr.Markdown("Select which analyses you want to run on the LLM responses.")
        
        # Analysis selection
        with gr.Group():
            analysis_options = gr.CheckboxGroup(
                choices=[
                    "Topic Modeling",
                    "N-gram Analysis",
                    "Bias Detection",
                    "Bag of Words",
                    "Similarity Metrics",
                    "Difference Highlighting"
                ],
                value=[
                    "Bag of Words",
                ],
                label="Select Analyses to Run"
            )
        
        # Create slider directly here for easier access
        gr.Markdown("### Bag of Words Parameters")
        bow_top_slider = gr.Slider(
            minimum=10, maximum=100, value=25, step=5, 
            label="Top Words to Compare", 
            elem_id="bow_top_slider"
        )
        
        # Parameters for each analysis type (these will be hidden/shown based on selections)
        with gr.Group() as analysis_params:
            # Topic modeling parameters
            with gr.Group(visible=False) as topic_params:
                gr.Markdown("### Topic Modeling Parameters")
                topic_count = gr.Slider(minimum=2, maximum=10, value=3, step=1, 
                                       label="Number of Topics")
            
            # N-gram parameters
            with gr.Group(visible=False) as ngram_params:
                gr.Markdown("### N-gram Parameters")
                ngram_n = gr.Radio(choices=["1", "2", "3"], value="2", 
                                  label="N-gram Size")
                ngram_top = gr.Slider(minimum=5, maximum=30, value=10, step=1, 
                                     label="Top N-grams to Display")
            
            # Bias detection parameters
            with gr.Group(visible=False) as bias_params:
                gr.Markdown("### Bias Detection Parameters")
                bias_methods = gr.CheckboxGroup(
                    choices=["Sentiment Analysis", "Partisan Leaning", "Framing Analysis"],
                    value=["Sentiment Analysis", "Partisan Leaning"],
                    label="Bias Detection Methods"
                )
            
            # Similarity metrics parameters
            with gr.Group(visible=False) as similarity_params:
                gr.Markdown("### Similarity Metrics Parameters")
                similarity_metrics = gr.CheckboxGroup(
                    choices=["Cosine Similarity", "Jaccard Similarity", "Semantic Similarity"],
                    value=["Cosine Similarity", "Semantic Similarity"],
                    label="Similarity Metrics to Calculate"
                )
                
            # Function to update parameter visibility based on selected analyses
            def update_params_visibility(selected):
                return {
                    topic_params: gr.update(visible="Topic Modeling" in selected),
                    ngram_params: gr.update(visible="N-gram Analysis" in selected),
                    bias_params: gr.update(visible="Bias Detection" in selected),
                    similarity_params: gr.update(visible="Similarity Metrics" in selected)
                }
                
            # Set up event handler for analysis selection
            analysis_options.change(
                fn=update_params_visibility,
                inputs=[analysis_options],
                outputs=[topic_params, ngram_params, bias_params, similarity_params]
            )
        
        # Run analysis button
        run_analysis_btn = gr.Button("Run Analysis", variant="primary", size="large")
        
        # Analysis output area - hidden JSON component to store raw results
        analysis_output = gr.JSON(label="Analysis Results", visible=False)
        
        # Visualization components container
        visualization_container = gr.Column(visible=False)
    
    # Return the bow_top_slider directly so app.py can access it
    return analysis_options, analysis_params, run_analysis_btn, analysis_output, bow_top_slider, visualization_container

def process_analysis_request(dataset, selected_analyses, parameters):
    """
    Process the analysis request and run selected analyses
    
    Args:
        dataset (dict): The dataset containing prompts and LLM responses
        selected_analyses (list): List of selected analysis types
        parameters (dict): Parameters for each analysis type
        
    Returns:
        tuple: (analysis_results, analysis_output_display)
    """
    try:
        print(f"Processing analysis request with: {selected_analyses}")
        print(f"Parameters: {parameters}")
        
        if not dataset or "entries" not in dataset or not dataset["entries"]:
            return {}, gr.update(visible=True, value=json.dumps({"error": "No dataset provided or dataset is empty"}, indent=2))
        
        analysis_results = {"analyses": {}}
        
        # Extract prompt and responses
        prompt = dataset["entries"][0]["prompt"]
        response_texts = [entry["response"] for entry in dataset["entries"]]
        model_names = [entry["model"] for entry in dataset["entries"]]
        
        print(f"Analyzing prompt: '{prompt[:50]}...'")
        print(f"Models: {model_names}")
        
        analysis_results["analyses"][prompt] = {}
        
        # Currently only implement Bag of Words since it's the most complete
        if "Bag of Words" in selected_analyses:
            # Set a default value
            top_words = 25
            
            # Try to get the parameter from the parameters dict
            if parameters and isinstance(parameters, dict) and "bow_top" in parameters:
                top_words = parameters["bow_top"]
                
            print(f"Running BOW analysis with top_words={top_words}")
            
            # Call the BOW comparison function
            bow_results = compare_bow(response_texts, model_names, top_words)
            analysis_results["analyses"][prompt]["bag_of_words"] = bow_results
        
        print("Analysis complete - results:", analysis_results)
        
        # Return results and update the output component
        return analysis_results, gr.update(visible=False, value=analysis_results)  # Hide the raw JSON
    except Exception as e:
        import traceback
        error_msg = f"Analysis error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return {}, gr.update(visible=True, value=json.dumps({"error": error_msg}, indent=2))