Spaces:
Sleeping
Sleeping
File size: 19,886 Bytes
4ebaf08 6528c77 4ebaf08 fd06f0b 929cfb4 08f222a 4ebaf08 7138f76 c74b269 4ebaf08 7138f76 cc57712 7138f76 cc57712 7138f76 cc57712 7138f76 cc57712 7138f76 8910689 7138f76 8910689 7138f76 c74b269 7138f76 c74b269 7138f76 8910689 7138f76 8910689 7138f76 c74b269 7138f76 c74b269 7138f76 c74b269 7138f76 c74b269 7138f76 c74b269 7138f76 c74b269 fe6b103 c74b269 765cde4 fe6b103 7138f76 fe6b103 765cde4 fe6b103 765cde4 fe6b103 765cde4 fe6b103 765cde4 fe6b103 765cde4 fe6b103 c74b269 fe6b103 7138f76 765cde4 7138f76 c74b269 7138f76 c74b269 7138f76 c74b269 929cfb4 c74b269 929cfb4 c74b269 929cfb4 c74b269 929cfb4 c74b269 929cfb4 c74b269 929cfb4 c74b269 929cfb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import gradio as gr
import json
from visualization.bow_visualizer import process_and_visualize_analysis
# Import analysis modules
from processors.topic_modeling import compare_topics
from processors.ngram_analysis import compare_ngrams
from processors.bow_analysis import compare_bow
from processors.text_classifiers import classify_formality, classify_sentiment, classify_complexity, compare_classifications
from processors.bias_detection import compare_bias
# Add the implementation of these helper functions
def extract_important_words(text, top_n=20):
"""
Extract the most important words from a text.
Args:
text (str): Input text
top_n (int): Number of top words to return
Returns:
list: List of important words with their counts
"""
# Import necessary modules
from collections import Counter
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Make sure nltk resources are available
try:
stop_words = set(stopwords.words('english'))
except:
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
try:
tokens = word_tokenize(text.lower())
except:
nltk.download('punkt')
tokens = word_tokenize(text.lower())
# Remove stopwords and non-alphabetic tokens
filtered_tokens = [word for word in tokens if word.isalpha() and word not in stop_words and len(word) > 2]
# Count word frequencies
word_counts = Counter(filtered_tokens)
# Get the top N words
top_words = word_counts.most_common(top_n)
# Format the result
result = [{"word": word, "count": count} for word, count in top_words]
return result
def calculate_text_similarity(text1, text2):
"""
Calculate similarity metrics between two texts.
Args:
text1 (str): First text
text2 (str): Second text
Returns:
dict: Similarity metrics
"""
from processors.metrics import calculate_similarity
# Calculate similarity using the metrics module
metrics = calculate_similarity(text1, text2)
# Add common word count
from collections import Counter
import nltk
from nltk.corpus import stopwords
# Make sure nltk resources are available
try:
stop_words = set(stopwords.words('english'))
except:
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
# Simple tokenization and filtering
words1 = set([w.lower() for w in nltk.word_tokenize(text1)
if w.isalpha() and w.lower() not in stop_words])
words2 = set([w.lower() for w in nltk.word_tokenize(text2)
if w.isalpha() and w.lower() not in stop_words])
# Calculate common words
common_words = words1.intersection(words2)
# Add to metrics
metrics["common_word_count"] = len(common_words)
return metrics
def extract_ngrams(text, n=2, top_n=10):
"""
Extract the most common n-grams from text.
Args:
text (str): Input text
n (int or str): Size of n-grams
top_n (int): Number of top n-grams to return
Returns:
list: List of important n-grams with their counts
"""
import nltk
from nltk.util import ngrams
from collections import Counter
# Convert n to int if it's a string
if isinstance(n, str):
n = int(n)
# Make sure nltk resources are available
try:
tokens = nltk.word_tokenize(text.lower())
except:
nltk.download('punkt')
tokens = nltk.word_tokenize(text.lower())
# Generate n-grams
n_grams = list(ngrams(tokens, n))
# Convert n-grams to strings for easier handling
n_gram_strings = [' '.join(gram) for gram in n_grams]
# Count n-gram frequencies
n_gram_counts = Counter(n_gram_strings)
# Get the top N n-grams
top_n_grams = n_gram_counts.most_common(top_n)
# Format the result
result = [{"ngram": ngram, "count": count} for ngram, count in top_n_grams]
return result
def compare_ngrams(text1, text2, n=2):
"""
Compare n-grams between two texts.
Args:
text1 (str or list): First text
text2 (str or list): Second text
n (int or str): Size of n-grams
Returns:
dict: Comparison metrics
"""
import nltk
from nltk.util import ngrams
from collections import Counter
# Convert n to int if it's a string
if isinstance(n, str):
n = int(n)
# Handle list inputs by converting to strings
if isinstance(text1, list):
text1 = ' '.join(str(item) for item in text1)
if isinstance(text2, list):
text2 = ' '.join(str(item) for item in text2)
# Make sure nltk resources are available
try:
tokens1 = nltk.word_tokenize(text1.lower())
tokens2 = nltk.word_tokenize(text2.lower())
except:
nltk.download('punkt')
tokens1 = nltk.word_tokenize(text1.lower())
tokens2 = nltk.word_tokenize(text2.lower())
# Generate n-grams
n_grams1 = set([' '.join(gram) for gram in ngrams(tokens1, n)])
n_grams2 = set([' '.join(gram) for gram in ngrams(tokens2, n)])
# Calculate common n-grams
common_n_grams = n_grams1.intersection(n_grams2)
# Return comparison metrics
return {
"common_ngram_count": len(common_n_grams)
}
def perform_topic_modeling(texts, model_names, n_topics=3):
"""
Perform topic modeling on a list of texts.
Args:
texts (list): List of text documents
model_names (list): Names of the models
n_topics (int): Number of topics to extract
Returns:
dict: Topic modeling results
"""
from processors.topic_modeling import compare_topics
# Use the topic modeling processor
result = compare_topics(texts, model_names, n_topics=n_topics)
return result
def process_analysis_request(dataset, selected_analysis, parameters):
"""
Process the analysis request based on the selected options.
Args:
dataset (dict): The input dataset
selected_analysis (str): The selected analysis type
parameters (dict): Additional parameters for the analysis
Returns:
tuple: A tuple containing (analysis_results, visualization_data)
"""
if not dataset or "entries" not in dataset or not dataset["entries"]:
return {}, None
# Initialize the results structure
results = {"analyses": {}}
# Get the prompt text from the first entry
prompt_text = dataset["entries"][0].get("prompt", "")
if not prompt_text:
return {"error": "No prompt found in dataset"}, None
# Initialize the analysis container for this prompt
results["analyses"][prompt_text] = {}
# Get model names and responses
model1_name = dataset["entries"][0].get("model", "Model 1")
model2_name = dataset["entries"][1].get("model", "Model 2")
model1_response = dataset["entries"][0].get("response", "")
model2_response = dataset["entries"][1].get("response", "")
# Process based on the selected analysis type
if selected_analysis == "Bag of Words":
# Get the top_n parameter and ensure it's an integer
top_n = parameters.get("bow_top", 25)
if isinstance(top_n, str):
top_n = int(top_n)
print(f"Using top_n value: {top_n}") # Debug print
# Perform Bag of Words analysis using the processor
from processors.bow_analysis import compare_bow
bow_results = compare_bow(
[model1_response, model2_response],
[model1_name, model2_name],
top_n=top_n
)
results["analyses"][prompt_text]["bag_of_words"] = bow_results
elif selected_analysis == "N-gram Analysis":
# Perform N-gram analysis
ngram_size = parameters.get("ngram_n", 2)
if isinstance(ngram_size, str):
ngram_size = int(ngram_size)
top_n = parameters.get("ngram_top", 10) # Using default 10
if isinstance(top_n, str):
top_n = int(top_n)
# Use the processor from the dedicated ngram_analysis module
from processors.ngram_analysis import compare_ngrams as ngram_processor
ngram_results = ngram_processor(
[model1_response, model2_response],
[model1_name, model2_name],
n=ngram_size,
top_n=top_n
)
results["analyses"][prompt_text]["ngram_analysis"] = ngram_results
elif selected_analysis == "Topic Modeling":
# Perform topic modeling analysis
topic_count = parameters.get("topic_count", 3)
if isinstance(topic_count, str):
topic_count = int(topic_count)
try:
# Import the enhanced topic modeling function
from processors.topic_modeling import compare_topics, load_all_datasets_for_topic_modeling
print("Starting topic modeling analysis...")
# Get all responses from dataset directory
all_model1_responses, all_model2_responses, dataset_model_names = load_all_datasets_for_topic_modeling()
# Add current responses to the collection if they're not empty
if model1_response.strip():
all_model1_responses.append(model1_response)
print(f"Added current model1 response ({len(model1_response.split())} words)")
if model2_response.strip():
all_model2_responses.append(model2_response)
print(f"Added current model2 response ({len(model2_response.split())} words)")
# Ensure we're using all loaded responses
print(f"Using {len(all_model1_responses)} model1 responses and {len(all_model2_responses)} model2 responses")
# If we have data, perform topic modeling with all available responses
if all_model1_responses and all_model2_responses:
# Calculate total word count for diagnostics
total_words_model1 = sum(len(text.split()) for text in all_model1_responses)
total_words_model2 = sum(len(text.split()) for text in all_model2_responses)
print(f"Total words: Model1={total_words_model1}, Model2={total_words_model2}")
topic_results = compare_topics(
texts_set_1=all_model1_responses,
texts_set_2=all_model2_responses,
n_topics=topic_count,
model_names=[model1_name, model2_name]) # Keep original model names for output
results["analyses"][prompt_text]["topic_modeling"] = topic_results
# Add helpful message about using all datasets
results["analyses"][prompt_text]["topic_modeling"]["info"] = f"Topic modeling performed using {len(all_model1_responses)} responses from model 1 and {len(all_model2_responses)} responses from model 2 for better results."
# Add corpus details to help users understand the analysis
results["analyses"][prompt_text]["topic_modeling"]["corpus_stats"] = {
"model1_documents": len(all_model1_responses),
"model2_documents": len(all_model2_responses),
"model1_total_words": total_words_model1,
"model2_total_words": total_words_model2
}
else:
# Fallback to original implementation if no data found
print("No dataset responses loaded, falling back to current responses only")
topic_results = compare_topics(
texts_set_1=[model1_response],
texts_set_2=[model2_response],
n_topics=topic_count,
model_names=[model1_name, model2_name])
results["analyses"][prompt_text]["topic_modeling"] = topic_results
# Add helpful message if text is very short
if (len(model1_response.split()) < 50 or len(model2_response.split()) < 50):
if "error" not in topic_results:
# Add a warning message about short text
results["analyses"][prompt_text]["topic_modeling"]["warning"] = "One or both texts are relatively short. Topic modeling works best with longer texts."
except Exception as e:
import traceback
error_trace = traceback.format_exc()
print(f"Topic modeling error: {str(e)}\n{error_trace}")
results["analyses"][prompt_text]["topic_modeling"] = {
"models": [model1_name, model2_name],
"error": str(e),
"message": "Topic modeling failed. Try with longer text or different parameters."
}
elif selected_analysis == "Classifier":
# Perform classifier analysis
from processors.text_classifiers import classify_formality, classify_sentiment, classify_complexity, compare_classifications
results["analyses"][prompt_text]["classifier"] = {
"models": [model1_name, model2_name],
"classifications": {
model1_name: {
"formality": classify_formality(model1_response),
"sentiment": classify_sentiment(model1_response),
"complexity": classify_complexity(model1_response)
},
model2_name: {
"formality": classify_formality(model2_response),
"sentiment": classify_sentiment(model2_response),
"complexity": classify_complexity(model2_response)
}
},
"differences": compare_classifications(model1_response, model2_response)
}
elif selected_analysis == "Bias Detection":
try:
# Perform bias detection analysis, always focusing on partisan leaning
from processors.bias_detection import compare_bias
bias_results = compare_bias(
model1_response,
model2_response,
model_names=[model1_name, model2_name]
)
results["analyses"][prompt_text]["bias_detection"] = bias_results
except Exception as e:
import traceback
print(f"Bias detection error: {str(e)}\n{traceback.format_exc()}")
results["analyses"][prompt_text]["bias_detection"] = {
"models": [model1_name, model2_name],
"error": str(e),
"message": "Bias detection failed. Try with different parameters."
}
else:
# Unknown analysis type
results["analyses"][prompt_text]["message"] = "Please select a valid analysis type."
# Return both the analysis results and a placeholder for visualization data
return results, None
def create_analysis_screen():
"""
Create the analysis options screen with enhanced topic modeling options
Returns:
tuple: (analysis_options, analysis_params, run_analysis_btn, analysis_output, ngram_n, topic_count)
"""
import gradio as gr
with gr.Column() as analysis_screen:
gr.Markdown("## Analysis Options")
gr.Markdown("Select which analysis you want to run on the LLM responses.")
# Change from CheckboxGroup to Radio for analysis selection
with gr.Group():
analysis_options = gr.Radio(
choices=[
"Bag of Words",
"N-gram Analysis",
"Bias Detection",
"Classifier"
],
value="Bag of Words", # Default selection
label="Select Analysis Type"
)
# Create N-gram parameters accessible at top level
ngram_n = gr.Radio(
choices=["1", "2", "3"], value="2",
label="N-gram Size",
visible=False
)
# Create enhanced topic modeling parameter accessible at top level
topic_count = gr.Slider(
minimum=2, maximum=10, value=3, step=1,
label="Number of Topics",
info="Choose fewer topics for shorter texts, more topics for longer texts",
visible=False
)
# Parameters for each analysis type
with gr.Group() as analysis_params:
# Topic modeling parameters with enhanced options
with gr.Group(visible=False) as topic_params:
gr.Markdown("### Topic Modeling Parameters")
gr.Markdown("""
Topic modeling extracts thematic patterns from text.
For best results:
- Use longer text samples (100+ words)
- Adjust topic count based on text length
- For political content, 3-5 topics usually works well
""")
# We're already using topic_count defined above
# N-gram parameters group (using external ngram_n)
with gr.Group(visible=False) as ngram_params:
gr.Markdown("### N-gram Parameters")
# We're already using ngram_n defined above
# Bias detection parameters
with gr.Group(visible=False) as bias_params:
gr.Markdown("### Bias Detection Parameters")
gr.Markdown("Analysis will focus on detecting partisan leaning.")
# Classifier parameters
with gr.Group(visible=False) as classifier_params:
gr.Markdown("### Classifier Parameters")
gr.Markdown("Classifies responses based on formality, sentiment, and complexity")
# Function to update parameter visibility based on selected analysis
def update_params_visibility(selected):
return {
topic_params: gr.update(visible=selected == "Topic Modeling"),
ngram_params: gr.update(visible=selected == "N-gram Analysis"),
bias_params: gr.update(visible=selected == "Bias Detection"),
classifier_params: gr.update(visible=selected == "Classifier"),
ngram_n: gr.update(visible=selected == "N-gram Analysis"),
topic_count: gr.update(visible=selected == "Topic Modeling")
}
# Set up event handler for analysis selection
analysis_options.change(
fn=update_params_visibility,
inputs=[analysis_options],
outputs=[
topic_params,
ngram_params,
bias_params,
classifier_params,
ngram_n,
topic_count
]
)
# Run analysis button
run_analysis_btn = gr.Button("Run Analysis", variant="primary", size="large")
# Analysis output area - hidden JSON component to store raw results
analysis_output = gr.JSON(label="Analysis Results", visible=False)
# Return the components needed by app.py
return analysis_options, analysis_params, run_analysis_btn, analysis_output, ngram_n, topic_count |