Spaces:
Sleeping
Sleeping
# examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]] | |
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
HEIGHT, WIDTH = 224, 224 | |
IMG_SIZE = 224 | |
model = load_model('Models/best_model1.h5') | |
def classify_image(inp): | |
NUM_CLASSES = 2 | |
labels = ['Cat', 'Dog'] | |
inp = tf.image.resize(inp, [IMG_SIZE, IMG_SIZE]) | |
inp = inp.numpy().reshape((-1, IMG_SIZE, IMG_SIZE, 3)) | |
inp = tf.keras.applications.vgg16.preprocess_input(inp) | |
prediction = model.predict(inp).flatten() | |
return {labels[i]: float(prediction[i]) for i in range(NUM_CLASSES)} # Fixed: return floats | |
image = gr.Image(height=HEIGHT, width=WIDTH, label='Input') | |
label = gr.Label(num_top_classes=2) | |
examples = [["Examples/img1.png"], ["Examples/img2.png"],["Examples/img3.png"], ["Examples/img4.png"]] | |
gr.Interface( | |
fn=classify_image, | |
inputs=image, | |
outputs=label, | |
title='Smart Pet Classifier', | |
examples=examples | |
).launch(debug=False) |