Spaces:
Running
Running
File size: 24,973 Bytes
a87bc00 bcf08f8 a87bc00 c405013 2cc0cb0 a87bc00 c405013 529eea1 bcf08f8 7b11062 c405013 a87bc00 c405013 a87bc00 c27c36d a87bc00 bcf08f8 029ffc9 bcf08f8 f18a30e 63ec771 a92d4d8 08c56ef a92d4d8 c405013 bcf08f8 029ffc9 b3aaf10 c405013 bcf08f8 97be419 bcf08f8 a87bc00 bcf08f8 a87bc00 2cbc17e a87bc00 bcf08f8 c405013 bcf08f8 c405013 bcf08f8 c405013 bcf08f8 c405013 bcf08f8 c405013 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 029ffc9 c405013 029ffc9 2cbc17e 029ffc9 2cbc17e 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 c405013 a87bc00 bcf08f8 2cbc17e d5beb0e bcf08f8 54ed831 bcf08f8 c405013 bcf08f8 3d52ed2 bcf08f8 3d52ed2 bcf08f8 3d52ed2 bcf08f8 2cbc17e 3d52ed2 2cbc17e bcf08f8 2cbc17e 3d52ed2 bcf08f8 2cbc17e c405013 2cbc17e c405013 2cbc17e 54ed831 bcf08f8 3d52ed2 200dcdb 2cc0cb0 d6d183b 2cbc17e 200dcdb 3d52ed2 200dcdb 2cbc17e 2cc0cb0 d6d183b 2cbc17e d6d183b 200dcdb 2cc0cb0 200dcdb 3d52ed2 200dcdb 3d52ed2 200dcdb 2cc0cb0 200dcdb 2cc0cb0 200dcdb 2cc0cb0 200dcdb 2cbc17e 3d52ed2 d6d183b 200dcdb 54ed831 d6d183b bcf08f8 3d52ed2 bcf08f8 c405013 2cbc17e c405013 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 2cbc17e d6d183b 2cbc17e c405013 bcf08f8 3d52ed2 bcf08f8 d6d183b 2cbc17e bcf08f8 c405013 bcf08f8 3d52ed2 2cbc17e bcf08f8 3d52ed2 c405013 3d52ed2 c405013 3d52ed2 bcf08f8 2cbc17e 3d52ed2 2cbc17e 3d52ed2 bcf08f8 3d52ed2 2cbc17e 3d52ed2 2cbc17e 54ed831 c405013 bcf08f8 c405013 bcf08f8 018141a 9f93f0e c405013 018141a 7a966d7 2cbc17e 6542f5d 2cbc17e bcf08f8 c405013 bcf08f8 c405013 018141a bcf08f8 a87bc00 bcf08f8 2cbc17e bcf08f8 2cbc17e bcf08f8 884d940 c405013 de45d29 cbcdc2b 2cbc17e 029ffc9 2cbc17e 029ffc9 2cbc17e c405013 2cbc17e 9f93f0e 2cbc17e 029ffc9 2cbc17e bcf08f8 2cbc17e 029ffc9 bcf08f8 c405013 2cbc17e 029ffc9 bcf08f8 2cbc17e 029ffc9 bcf08f8 029ffc9 2cbc17e c405013 2cbc17e 029ffc9 d6d183b 018141a c405013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
# from nltk.stem import WordNetLemmatizer # Not used, commented out
from nltk.text import Text
from nltk.probability import FreqDist
from cleantext import clean
# import textract # Replaced by PyPDF2
import PyPDF2 # Added for PDF parsing
import urllib.request
from io import BytesIO
import sys
import pandas as pd
# import cv2 # Not used, commented out
import re
from wordcloud import WordCloud # , ImageColorGenerator # ImageColorGenerator not used, commented out
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from dotenv import load_dotenv
import groq
import json
import traceback
import numpy as np
import unidecode
import contractions
from sklearn.feature_extraction.text import TfidfVectorizer
# Load environment variables
load_dotenv()
# Inside your main script (e.g., near the top after imports)
import nltk
import ssl # Sometimes needed for NLTK downloads
def ensure_nltk_resources():
try:
# Try to find a resource to see if download is needed
# Using punkt as an example; you might check others too
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/stopwords')
# Add checks for wordnet, words, punkt_tab as needed
except LookupError:
print("NLTK resources not found. Downloading...")
try:
# Handle potential SSL issues (common on some systems)
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
nltk.download(['stopwords', 'wordnet', 'words'])
nltk.download('punkt')
nltk.download('punkt_tab')
print("NLTK resources downloaded successfully.")
# Call the function at the start of your script
ensure_nltk_resources()
# Initialize Groq client
groq_api_key = os.getenv("GROQ_API_KEY")
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
# Stopwords customization
stop_words = set(stopwords.words('english'))
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set
# --- Parsing & Preprocessing Functions ---
# --- Replaced textract with PyPDF2 ---
def Parsing(parsed_text):
"""
Parses text from a PDF file using PyPDF2.
"""
try:
# Get the file path from the Gradio UploadFile object
if hasattr(parsed_text, 'name'):
file_path = parsed_text.name
else:
# Fallback if it's somehow just a string path
file_path = parsed_text
# Use PyPDF2 to read the PDF
text = ""
with open(file_path, 'rb') as pdf_file: # Open in binary read mode
pdf_reader = PyPDF2.PdfReader(pdf_file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n" # Add newline between pages
# Clean the extracted text
return clean(text)
except FileNotFoundError:
print(f"Error parsing PDF: File not found at path: {file_path}")
return f"Error parsing PDF: File not found. Please check the file upload."
except PyPDF2.errors.PdfReadError as pre:
print(f"Error reading PDF: {pre}")
return f"Error reading PDF: The file might be corrupted or password-protected."
except Exception as e:
print(f"Error parsing PDF: {e}")
return f"Error parsing PDF: {e}"
def clean_text(text):
text = text.encode("ascii", errors="ignore").decode("ascii")
text = unidecode.unidecode(text)
text = contractions.fix(text)
text = re.sub(r"\n", " ", text)
text = re.sub(r"\t", " ", text)
text = re.sub(r"/ ", " ", text)
text = text.strip()
text = re.sub(" +", " ", text).strip()
text = [word for word in text.split() if word not in stop_words]
return ' '.join(text)
def Preprocess(textParty):
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
text2Party = pattern.sub('', text1Party)
return text2Party
# --- Core Analysis Functions ---
def generate_summary(text):
if not groq_client:
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
# Adjusted truncation length for potentially better summary context
if len(text) > 15000:
text = text[:15000]
try:
completion = groq_client.chat.completions.create(
model="llama3-8b-8192", # Or your preferred model
messages=[
{"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
{"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n{text}"}
],
temperature=0.3,
max_tokens=800
)
return completion.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
# --- New LLM-based Search Function ---
def get_contextual_search_result(target_word, tar_passage, groq_client_instance, max_context_length=8000):
"""
Uses the LLM to provide contextual information about the target word within the passage.
"""
if not target_word or target_word.strip() == "":
return "Please enter a search term."
if not groq_client_instance:
return "Contextual search requires the LLM API. Please set up your GROQ_API_KEY."
# Truncate passage if too long for the model/context window
original_length = len(tar_passage)
if original_length > max_context_length:
tar_passage_truncated = tar_passage[:max_context_length]
print(f"Warning: Passage truncated for LLM search context from {original_length} to {max_context_length} characters.")
else:
tar_passage_truncated = tar_passage
# --- Improved Prompt ---
prompt = f"""
You are an expert political analyst. You have been given a section of a political manifesto and a specific search term.
Your task is to extract and summarize all information related to the search term from the provided text.
Focus on:
1. Specific policies, promises, or statements related to the term.
2. The context in which the term is used.
3. Any key details, figures, or commitments mentioned.
Present your findings concisely. If the term is not relevant or not found in the provided text section, state that clearly.
Search Term: {target_word}
Manifesto Text Section:
{tar_passage_truncated}
Relevant Information:
"""
try:
completion = groq_client_instance.chat.completions.create(
model="llama3-8b-8192", # Use the same or a suitable model
messages=[
{"role": "system", "content": "You are a helpful assistant skilled at analyzing political texts and extracting relevant information based on a search query. Provide clear, concise summaries."},
{"role": "user", "content": prompt}
],
temperature=0.2, # Low temperature for more factual extraction
max_tokens=1000 # Adjust based on expected output length
)
result = completion.choices[0].message.content.strip()
# Add a note if the input was truncated
if original_length > max_context_length:
result = f"(Note: Analysis based on the first {max_context_length} characters of the manifesto.)\n\n" + result
return result if result else f"No specific context for '{target_word}' could be generated from the provided text section."
except Exception as e:
error_msg = f"Error during contextual search for '{target_word}': {str(e)}"
print(error_msg)
traceback.print_exc()
return error_msg # Or return the error message directly
def fDistance(text2Party):
word_tokens_party = word_tokenize(text2Party)
fdistance = FreqDist(word_tokens_party).most_common(10)
mem = {x[0]: x[1] for x in fdistance}
vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
try:
tfidf_matrix = vectorizer.fit_transform(sent_tokenize(text2Party))
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = {}
sentences = sent_tokenize(text2Party)
for i, word in enumerate(feature_names):
scores = []
for j in range(tfidf_matrix.shape[0]): # Iterate through sentences
if i < tfidf_matrix.shape[1]: # Check if word index is valid for this sentence vector
scores.append(tfidf_matrix[j, i])
if scores:
tfidf_scores[word] = sum(scores) / len(scores) # Average TF-IDF score across sentences
combined_scores = {}
all_words = set(list(mem.keys()) + list(tfidf_scores.keys()))
max_freq = max(mem.values()) if mem else 1
max_tfidf = max(tfidf_scores.values()) if tfidf_scores else 1
for word in all_words:
freq_score = mem.get(word, 0) / max_freq
tfidf_score = tfidf_scores.get(word, 0) / max_tfidf
combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)
top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
return normalize(top_words)
except ValueError as ve: # Handle case where TF-IDF fails (e.g., empty after processing)
print(f"Warning: TF-IDF failed, using only frequency: {ve}")
# Fallback to just normalized frequency if TF-IDF fails
if mem:
max_freq = max(mem.values())
return {k: v / max_freq for k, v in list(mem.items())[:10]} # Return top 10 freq, normalized
else:
return {}
def normalize(d, target=1.0):
raw = sum(d.values())
factor = target / raw if raw != 0 else 0
return {key: value * factor for key, value in d.items()}
# --- Visualization Functions with Error Handling ---
# --- Improved safe_plot to handle apply_aspect errors ---
def safe_plot(func, *args, **kwargs):
"""Executes a plotting function and returns the image, handling errors."""
buf = None # Initialize buffer
try:
# Ensure a clean figure state
fig = plt.figure() # Create a new figure explicitly
func(*args, **kwargs)
buf = BytesIO()
# Try saving with bbox_inches, but catch potential apply_aspect error
try:
plt.savefig(buf, format='png', bbox_inches='tight')
except AttributeError as ae:
if "apply_aspect" in str(ae):
print(f"Warning: bbox_inches='tight' failed ({ae}), saving without it.")
buf.seek(0) # Reset buffer as it might be partially written
buf = BytesIO() # Get a fresh buffer
plt.savefig(buf, format='png') # Save without bbox_inches
else:
raise # Re-raise if it's a different AttributeError
buf.seek(0)
img = Image.open(buf)
plt.close(fig) # Explicitly close the specific figure
return img
except Exception as e:
print(f"Plotting error in safe_plot: {e}")
if buf:
buf.close() # Ensure buffer is closed on error if it was created
traceback.print_exc()
# Try to return a placeholder or None
plt.close('all') # Aggressive close on error
return None
def fDistancePlot(text2Party):
def plot_func():
tokens = word_tokenize(text2Party)
if not tokens:
plt.text(0.5, 0.5, "No data to plot", ha='center', va='center')
return
fdist = FreqDist(tokens)
fdist.plot(15, title='Frequency Distribution')
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels if needed
plt.tight_layout()
return safe_plot(plot_func)
def DispersionPlot(textParty):
"""Generates the word dispersion plot."""
buf = None # Initialize buffer
try:
word_tokens_party = word_tokenize(textParty)
print(f"Debug DispersionPlot: Total tokens: {len(word_tokens_party)}") # Debug print
if not word_tokens_party:
print("Warning: No tokens found for dispersion plot.")
return None
moby = Text(word_tokens_party)
fdistance = FreqDist(word_tokens_party)
print(f"Debug DispersionPlot: FreqDist sample: {list(fdistance.most_common(10))}") # Debug print
# --- Improved word selection logic ---
# Get common words, excluding very short words which might be punctuation/non-informative
# or words that dispersion_plot might have trouble with.
common_words_raw = fdistance.most_common(15) # Check a few more common words
# Filter: length > 2, isalpha (to avoid punctuation), not just digits
common_words_filtered = [(word, freq) for word, freq in common_words_raw if len(word) > 2 and word.isalpha() and not word.isdigit()]
print(f"Debug DispersionPlot: Filtered common words: {common_words_filtered}") # Debug print
# Select top 5 from filtered list
if len(common_words_filtered) < 5:
word_Lst = [word for word, _ in common_words_filtered]
else:
word_Lst = [common_words_filtered[x][0] for x in range(5)]
# Final check: Ensure words are present in the Text object (moby)
# This is crucial for dispersion_plot
final_word_list = [word for word in word_Lst if word in moby] # Check membership in the Text object
print(f"Debug DispersionPlot: Final word list for plot: {final_word_list}") # Debug print
if not final_word_list:
print("Warning: No suitable words found for dispersion plot after filtering and checking membership.")
# Create a simple plot indicating no data
fig, ax = plt.subplots(figsize=(8, 3))
ax.text(0.5, 0.5, "No suitable words found for dispersion plot", ha='center', va='center', transform=ax.transAxes)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off') # Hide axes for the message
fig.suptitle('Dispersion Plot')
else:
# --- Manage figure explicitly without passing 'ax' ---
fig = plt.figure(figsize=(10, 5)) # Create figure explicitly
plt.title('Dispersion Plot')
# Call dispersion_plot with the verified word list
moby.dispersion_plot(final_word_list)
plt.tight_layout()
buf = BytesIO()
# Handle potential apply_aspect error for dispersion plot
try:
fig.savefig(buf, format='png', bbox_inches='tight')
except AttributeError as ae:
if "apply_aspect" in str(ae):
print(f"Warning: bbox_inches='tight' failed for Dispersion Plot ({ae}), saving without it.")
buf.seek(0)
buf = BytesIO() # Get a fresh buffer
fig.savefig(buf, format='png')
else:
raise # Re-raise if it's a different AttributeError
buf.seek(0)
img = Image.open(buf)
plt.close(fig) # Close the specific figure created
return img
except Exception as e:
print(f"Dispersion plot error: {e}")
if buf:
buf.close() # Ensure buffer is closed on error
traceback.print_exc()
plt.close('all') # Aggressive close on error
# Optionally return a placeholder image or None
return None # Return None on error
def word_cloud_generator(parsed_text_name, text_Party):
"""Generates the word cloud image."""
buf = None # Initialize buffer
try:
# Handle case where parsed_text_name might not have .name
filename_lower = ""
if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
filename_lower = parsed_text_name.name.lower()
elif isinstance(parsed_text_name, str):
filename_lower = parsed_text_name.lower()
mask_path = None
if 'bjp' in filename_lower:
mask_path = 'bjpImg2.jpeg'
elif 'congress' in filename_lower:
mask_path = 'congress3.jpeg'
elif 'aap' in filename_lower:
mask_path = 'aapMain2.jpg'
if text_Party.strip() == "":
raise ValueError("Text for word cloud is empty")
# Generate word cloud object
if mask_path and os.path.exists(mask_path):
orgImg = Image.open(mask_path)
if orgImg.mode != 'RGB':
orgImg = orgImg.convert('RGB')
mask = np.array(orgImg)
wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white', mode='RGBA').generate(text_Party) # Added mode='RGBA'
else:
wordcloud = WordCloud(max_words=2000, background_color='white', mode='RGBA').generate(text_Party)
# --- Key Fix: Explicitly manage figure and axes for word cloud ---
fig, ax = plt.subplots(figsize=(8, 6)) # Create new figure and axes
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis("off")
fig.tight_layout(pad=0) # Remove padding
buf = BytesIO()
# Handle potential apply_aspect error for word cloud too
try:
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150, facecolor='white') # Added dpi and facecolor
except AttributeError as ae:
if "apply_aspect" in str(ae):
print(f"Warning: bbox_inches='tight' failed for Word Cloud ({ae}), saving without it.")
buf.seek(0)
buf = BytesIO()
fig.savefig(buf, format='png', dpi=150, facecolor='white')
else:
raise
buf.seek(0)
img = Image.open(buf)
plt.close(fig) # Close the specific figure
return img
except Exception as e:
print(f"Word cloud error: {e}")
if buf:
buf.close() # Ensure buffer is closed on error
traceback.print_exc()
plt.close('all') # Aggressive close on error
return None # Return None on error
# --- Main Analysis Function ---
def analysis(Manifesto, Search):
try:
if Manifesto is None:
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
if Search.strip() == "":
Search = "government"
raw_party = Parsing(Manifesto) # Uses PyPDF2 now
if isinstance(raw_party, str) and raw_party.startswith("Error"):
return raw_party, {}, None, None, None, None, None, "Parsing failed"
text_Party = clean_text(raw_party)
text_Party_processed = Preprocess(text_Party)
# --- Perform Search FIRST using the ORIGINAL text for better context ---
# Use the new LLM-based search function
searChRes = get_contextual_search_result(Search, raw_party, groq_client)
summary = generate_summary(raw_party) # Use raw_party for summary for more context?
# --- Sentiment Analysis ---
if not text_Party_processed.strip():
# Handle empty text after processing
df_dummy = pd.DataFrame({'Polarity_Label': ['Neutral'], 'Subjectivity_Label': ['Low']})
polarity_val = 0.0
subjectivity_val = 0.0
else:
polarity_val = TextBlob(text_Party_processed).sentiment.polarity
subjectivity_val = TextBlob(text_Party_processed).sentiment.subjectivity
polarity_label = 'Positive' if polarity_val > 0 else 'Negative' if polarity_val < 0 else 'Neutral'
subjectivity_label = 'High' if subjectivity_val > 0.5 else 'Low'
df_dummy = pd.DataFrame({'Polarity_Label': [polarity_label], 'Subjectivity_Label': [subjectivity_label]})
# --- Generate Plots with Safe Plotting ---
# Pass the potentially empty text and handle inside plotting functions
sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
freq_plot = fDistancePlot(text_Party_processed)
dispersion_plot = DispersionPlot(text_Party_processed) # Uses updated version
wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself, uses updated version
fdist_Party = fDistance(text_Party_processed)
# searChRes is now generated earlier using LLM
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
except Exception as e:
error_msg = f"Critical error in analysis function: {str(e)}"
print(error_msg)
traceback.print_exc()
# Return error messages/images in the correct order
return error_msg, {}, None, None, None, None, None, "Analysis failed"
# --- Gradio Interface ---
# Use Blocks for custom layout
with gr.Blocks(title='Manifesto Analysis') as demo:
gr.Markdown("# Manifesto Analysis")
# Input Section
with gr.Row():
with gr.Column(scale=1): # Adjust scale if needed
file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
with gr.Column(scale=1):
search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
submit_btn = gr.Button("Analyze Manifesto", variant='primary') # Make button prominent
# Output Section using Tabs
with gr.Tabs():
# --- Summary Tab ---
with gr.TabItem("Summary"):
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)
# --- Search Results Tab (uses LLM output now) ---
with gr.TabItem("Search Results"):
search_output = gr.Textbox(label='Context Based Search Results', lines=15, interactive=False, max_lines=20) # Increased lines/max_lines
# --- Key Topics Tab ---
with gr.TabItem("Key Topics"):
topics_output = gr.Label(label="Most Relevant Topics (LLM Enhanced)", num_top_classes=10) # Show top 10
# --- Visualizations Tab ---
with gr.TabItem("Visualizations"):
# Use Rows and Columns for better arrangement
with gr.Row(): # Row 1: Sentiment & Subjectivity
with gr.Column():
sentiment_output = gr.Image(label='Sentiment Analysis', interactive=False, height=400) # Set height
with gr.Column():
subjectivity_output = gr.Image(label='Subjectivity Analysis', interactive=False, height=400)
with gr.Row(): # Row 2: Word Cloud & Frequency
with gr.Column():
wordcloud_output = gr.Image(label='Word Cloud', interactive=False, height=400)
with gr.Column():
freq_output = gr.Image(label='Frequency Distribution', interactive=False, height=400)
with gr.Row(): # Row 3: Dispersion Plot (Full width)
with gr.Column():
dispersion_output = gr.Image(label='Dispersion Plot', interactive=False, height=400) # Adjust height as needed
# --- Link Button Click to Function and Outputs ---
submit_btn.click(
fn=analysis,
inputs=[file_input, search_input],
outputs=[
search_output, # 1 (Now contextual LLM output)
topics_output, # 2
sentiment_output, # 3
subjectivity_output, # 4
wordcloud_output, # 5
freq_output, # 6
dispersion_output, # 7
summary_output # 8
],
concurrency_limit=1 # Limit concurrent analyses if needed
)
# --- Examples ---
gr.Examples(
examples=[
["Example/AAP_Manifesto_2019.pdf", "government"],
["Example/Bjp_Manifesto_2019.pdf", "environment"],
["Example/Congress_Manifesto_2019.pdf", "safety"]
],
inputs=[file_input, search_input],
outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output], # Link examples to outputs
fn=analysis # Run analysis on example click
)
if __name__ == "__main__":
demo.launch(debug=True, share=False, show_error=True)
|