File size: 10,628 Bytes
83d675a 8a6a4a8 83d675a 848b0e8 83d675a 8a6a4a8 004975c 83d675a 004975c 8a6a4a8 83d675a 848b0e8 83d675a ccd0584 83d675a c9a29b0 ccd0584 83d675a c9a29b0 83d675a ccd0584 83d675a af7056a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
from flask import Flask, request, jsonify, send_file
from PIL import Image
from io import BytesIO
import base64
import torch
import requests
import numpy as np
import uuid
import spaces
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
AutoTokenizer
)
from diffusers import DDPMScheduler, AutoencoderKL, UNet2DConditionModel
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
app = Flask(__name__)
# Variables globales pour stocker les modèles
models_loaded = False
def load_models():
global unet, tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two
global image_encoder, vae, UNet_Encoder, parsing_model, openpose_model, pipe
global models_loaded
if not models_loaded:
base_path = 'yisol/IDM-VTON'
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16, force_download=False)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False, force_download=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False, force_download=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16, force_download=False)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16, force_download=False)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16, force_download=False)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16, force_download=False)
# Set the correct encoder_hid_dim_type here
UNet_Encoder = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
encoder_hid_dim_type="text_proj", # Update based on model type
force_download=False
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
force_download=False
)
pipe.unet_encoder = UNet_Encoder
models_loaded = True
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image.convert("L")) # Convert to grayscale directly
binary_mask = np_image > threshold
mask = np.uint8(binary_mask * 255)
return Image.fromarray(mask)
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
def decode_image_from_base64(base64_str):
try:
img_data = base64.b64decode(base64_str)
return Image.open(BytesIO(img_data))
except Exception as e:
logging.error(f"Error decoding image: {e}")
raise
def encode_image_to_base64(img):
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logging.error(f"Error encoding image: {e}")
raise
def save_image(img):
unique_name = f"{uuid.uuid4()}.webp"
img.save(unique_name, format="WEBP", lossless=True)
return unique_name
def clear_gpu_memory():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@spaces.GPU
def start_tryon(human_dict, garment_image, garment_description, use_auto_mask, use_auto_crop, denoise_steps, seed, category='upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garment_image = garment_image.convert("RGB").resize((768, 1024))
human_image_orig = human_dict["background"].convert("RGB")
if use_auto_crop:
width, height = human_image_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left, top = (width - target_width) / 2, (height - target_height) / 2
right, bottom = (width + target_width) / 2, (height + target_height) / 2
cropped_img = human_image_orig.crop((left, top, right, bottom)).resize((768, 1024))
else:
cropped_img = human_image_orig.resize((768, 1024))
if use_auto_mask:
keypoints = openpose_model(cropped_img.resize((384, 512)))
model_parse, _ = parsing_model(cropped_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(human_dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(cropped_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_image_arg = _apply_exif_orientation(cropped_img.resize((384, 512)))
human_image_arg = convert_PIL_to_numpy(human_image_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_image = args.func(args, human_image_arg)
pose_image = Image.fromarray(pose_image[:, :, ::-1]).resize((768, 1024))
with torch.no_grad(), torch.cuda.amp.autocast():
prompt = "model is wearing " + garment_description
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt
)
prompt_c = "a photo of " + garment_description
negative_prompt_c = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds_c, _, _, _ = pipe.encode_prompt(
prompt_c, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt_c
)
pose_image = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(pose_image).unsqueeze(0).to(device, torch.float16)
garment_tensor = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(garment_image).unsqueeze(0).to(device, torch.float16)
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pose_image=pose_image,
garment_image=garment_tensor,
mask_image=mask_gray.to(device, torch.float16),
generator=torch.Generator(device).manual_seed(seed),
num_inference_steps=denoise_steps
).images
if images:
output_image = images[0]
output_base64 = encode_image_to_base64(output_image)
mask_image = mask
mask_base64 = encode_image_to_base64(mask_image)
return output_image, mask_image
else:
raise ValueError("Failed to generate image")
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/webp')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
@app.route('/tryon', methods=['POST'])
def tryon_handler():
try:
data = request.json
human_image = decode_image_from_base64(data['human_image'])
garment_image = decode_image_from_base64(data['garment_image'])
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', 42))
category = data.get('category', 'upper_body')
human_dict = {
'background': human_image,
'layers': [human_image] if not use_auto_mask else None,
'composite': None
}
clear_gpu_memory()
output_image, mask_image = start_tryon(
human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, category
)
output_base64 = encode_image_to_base64(output_image)
mask_base64 = encode_image_to_base64(mask_image)
return jsonify({
'output_image': output_base64,
'mask_image': mask_base64
})
except Exception as e:
logging.error(f"Error in tryon_handler: {e}")
return jsonify({'error': str(e)}), 500
if __name__ == "__main__":
load_models() # Charge les modèles au démarrage
app.run(host='0.0.0.0', port=7860)
|