|
import os |
|
from flask import Flask, request, jsonify, send_file |
|
from PIL import Image |
|
from io import BytesIO |
|
import base64 |
|
import torch |
|
import requests |
|
import numpy as np |
|
import uuid |
|
import spaces |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
AutoTokenizer |
|
) |
|
from diffusers import DDPMScheduler, AutoencoderKL, UNet2DConditionModel |
|
from utils_mask import get_mask_location |
|
from torchvision import transforms |
|
import apply_net |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
from preprocess.openpose.run_openpose import OpenPose |
|
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation |
|
from torchvision.transforms.functional import to_pil_image |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
models_loaded = False |
|
|
|
def load_models(): |
|
global unet, tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two |
|
global image_encoder, vae, UNet_Encoder, parsing_model, openpose_model, pipe |
|
global models_loaded |
|
|
|
if not models_loaded: |
|
base_path = 'yisol/IDM-VTON' |
|
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16, force_download=False) |
|
unet.requires_grad_(False) |
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False, force_download=False) |
|
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False, force_download=False) |
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") |
|
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16, force_download=False) |
|
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16, force_download=False) |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16, force_download=False) |
|
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16, force_download=False) |
|
|
|
|
|
UNet_Encoder = UNet2DConditionModel.from_pretrained( |
|
base_path, |
|
subfolder="unet_encoder", |
|
torch_dtype=torch.float16, |
|
encoder_hid_dim_type="text_proj", |
|
force_download=False |
|
) |
|
|
|
parsing_model = Parsing(0) |
|
openpose_model = OpenPose(0) |
|
|
|
UNet_Encoder.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
|
|
tensor_transfrom = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) |
|
|
|
pipe = TryonPipeline.from_pretrained( |
|
base_path, |
|
unet=unet, |
|
vae=vae, |
|
feature_extractor=CLIPImageProcessor(), |
|
text_encoder=text_encoder_one, |
|
text_encoder_2=text_encoder_two, |
|
tokenizer=tokenizer_one, |
|
tokenizer_2=tokenizer_two, |
|
scheduler=noise_scheduler, |
|
image_encoder=image_encoder, |
|
torch_dtype=torch.float16, |
|
force_download=False |
|
) |
|
pipe.unet_encoder = UNet_Encoder |
|
|
|
models_loaded = True |
|
|
|
def pil_to_binary_mask(pil_image, threshold=0): |
|
np_image = np.array(pil_image.convert("L")) |
|
binary_mask = np_image > threshold |
|
mask = np.uint8(binary_mask * 255) |
|
return Image.fromarray(mask) |
|
|
|
def get_image_from_url(url): |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
return Image.open(BytesIO(response.content)) |
|
except Exception as e: |
|
logging.error(f"Error fetching image from URL: {e}") |
|
raise |
|
|
|
def decode_image_from_base64(base64_str): |
|
try: |
|
img_data = base64.b64decode(base64_str) |
|
return Image.open(BytesIO(img_data)) |
|
except Exception as e: |
|
logging.error(f"Error decoding image: {e}") |
|
raise |
|
|
|
def encode_image_to_base64(img): |
|
try: |
|
buffered = BytesIO() |
|
img.save(buffered, format="PNG") |
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
except Exception as e: |
|
logging.error(f"Error encoding image: {e}") |
|
raise |
|
|
|
def save_image(img): |
|
unique_name = f"{uuid.uuid4()}.webp" |
|
img.save(unique_name, format="WEBP", lossless=True) |
|
return unique_name |
|
|
|
def clear_gpu_memory(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
@spaces.GPU |
|
def start_tryon(human_dict, garment_image, garment_description, use_auto_mask, use_auto_crop, denoise_steps, seed, category='upper_body'): |
|
device = "cuda" |
|
openpose_model.preprocessor.body_estimation.model.to(device) |
|
pipe.to(device) |
|
pipe.unet_encoder.to(device) |
|
|
|
garment_image = garment_image.convert("RGB").resize((768, 1024)) |
|
human_image_orig = human_dict["background"].convert("RGB") |
|
|
|
if use_auto_crop: |
|
width, height = human_image_orig.size |
|
target_width = int(min(width, height * (3 / 4))) |
|
target_height = int(min(height, width * (4 / 3))) |
|
left, top = (width - target_width) / 2, (height - target_height) / 2 |
|
right, bottom = (width + target_width) / 2, (height + target_height) / 2 |
|
cropped_img = human_image_orig.crop((left, top, right, bottom)).resize((768, 1024)) |
|
else: |
|
cropped_img = human_image_orig.resize((768, 1024)) |
|
|
|
if use_auto_mask: |
|
keypoints = openpose_model(cropped_img.resize((384, 512))) |
|
model_parse, _ = parsing_model(cropped_img.resize((384, 512))) |
|
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints) |
|
mask = mask.resize((768, 1024)) |
|
else: |
|
mask = pil_to_binary_mask(human_dict['layers'][0].convert("RGB").resize((768, 1024))) |
|
|
|
mask_gray = (1 - transforms.ToTensor()(mask)) * transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(cropped_img) |
|
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) |
|
|
|
human_image_arg = _apply_exif_orientation(cropped_img.resize((384, 512))) |
|
human_image_arg = convert_PIL_to_numpy(human_image_arg, format="BGR") |
|
|
|
args = apply_net.create_argument_parser().parse_args( |
|
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) |
|
pose_image = args.func(args, human_image_arg) |
|
pose_image = Image.fromarray(pose_image[:, :, ::-1]).resize((768, 1024)) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
prompt = "model is wearing " + garment_description |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt( |
|
prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt |
|
) |
|
|
|
prompt_c = "a photo of " + garment_description |
|
negative_prompt_c = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
prompt_embeds_c, _, _, _ = pipe.encode_prompt( |
|
prompt_c, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt_c |
|
) |
|
|
|
pose_image = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(pose_image).unsqueeze(0).to(device, torch.float16) |
|
garment_tensor = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(garment_image).unsqueeze(0).to(device, torch.float16) |
|
|
|
images = pipe( |
|
prompt_embeds=prompt_embeds.to(device, torch.float16), |
|
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), |
|
pose_image=pose_image, |
|
garment_image=garment_tensor, |
|
mask_image=mask_gray.to(device, torch.float16), |
|
generator=torch.Generator(device).manual_seed(seed), |
|
num_inference_steps=denoise_steps |
|
).images |
|
|
|
if images: |
|
output_image = images[0] |
|
output_base64 = encode_image_to_base64(output_image) |
|
mask_image = mask |
|
mask_base64 = encode_image_to_base64(mask_image) |
|
return output_image, mask_image |
|
else: |
|
raise ValueError("Failed to generate image") |
|
|
|
|
|
|
|
@app.route('/api/get_image/<image_id>', methods=['GET']) |
|
def get_image(image_id): |
|
|
|
image_path = image_id |
|
|
|
|
|
try: |
|
return send_file(image_path, mimetype='image/webp') |
|
except FileNotFoundError: |
|
return jsonify({'error': 'Image not found'}), 404 |
|
|
|
@app.route('/tryon', methods=['POST']) |
|
def tryon_handler(): |
|
try: |
|
data = request.json |
|
human_image = decode_image_from_base64(data['human_image']) |
|
garment_image = decode_image_from_base64(data['garment_image']) |
|
description = data.get('description') |
|
use_auto_mask = data.get('use_auto_mask', True) |
|
use_auto_crop = data.get('use_auto_crop', False) |
|
denoise_steps = int(data.get('denoise_steps', 30)) |
|
seed = int(data.get('seed', 42)) |
|
category = data.get('category', 'upper_body') |
|
|
|
human_dict = { |
|
'background': human_image, |
|
'layers': [human_image] if not use_auto_mask else None, |
|
'composite': None |
|
} |
|
clear_gpu_memory() |
|
|
|
output_image, mask_image = start_tryon( |
|
human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, category |
|
) |
|
|
|
output_base64 = encode_image_to_base64(output_image) |
|
mask_base64 = encode_image_to_base64(mask_image) |
|
|
|
return jsonify({ |
|
'output_image': output_base64, |
|
'mask_image': mask_base64 |
|
}) |
|
except Exception as e: |
|
logging.error(f"Error in tryon_handler: {e}") |
|
return jsonify({'error': str(e)}), 500 |
|
|
|
if __name__ == "__main__": |
|
load_models() |
|
app.run(host='0.0.0.0', port=7860) |
|
|