Spaces:
Saad0KH
/
Running on Zero

IDM-VTON / app.py
Saad0KH's picture
Update app.py
c9a29b0 verified
raw
history blame
10.6 kB
import os
from flask import Flask, request, jsonify, send_file
from PIL import Image
from io import BytesIO
import base64
import torch
import requests
import numpy as np
import uuid
import spaces
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
AutoTokenizer
)
from diffusers import DDPMScheduler, AutoencoderKL, UNet2DConditionModel
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
app = Flask(__name__)
# Variables globales pour stocker les modèles
models_loaded = False
def load_models():
global unet, tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two
global image_encoder, vae, UNet_Encoder, parsing_model, openpose_model, pipe
global models_loaded
if not models_loaded:
base_path = 'yisol/IDM-VTON'
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16, force_download=False)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False, force_download=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False, force_download=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16, force_download=False)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16, force_download=False)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16, force_download=False)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16, force_download=False)
# Set the correct encoder_hid_dim_type here
UNet_Encoder = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
encoder_hid_dim_type="text_proj", # Update based on model type
force_download=False
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
force_download=False
)
pipe.unet_encoder = UNet_Encoder
models_loaded = True
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image.convert("L")) # Convert to grayscale directly
binary_mask = np_image > threshold
mask = np.uint8(binary_mask * 255)
return Image.fromarray(mask)
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
def decode_image_from_base64(base64_str):
try:
img_data = base64.b64decode(base64_str)
return Image.open(BytesIO(img_data))
except Exception as e:
logging.error(f"Error decoding image: {e}")
raise
def encode_image_to_base64(img):
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logging.error(f"Error encoding image: {e}")
raise
def save_image(img):
unique_name = f"{uuid.uuid4()}.webp"
img.save(unique_name, format="WEBP", lossless=True)
return unique_name
def clear_gpu_memory():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@spaces.GPU
def start_tryon(human_dict, garment_image, garment_description, use_auto_mask, use_auto_crop, denoise_steps, seed, category='upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garment_image = garment_image.convert("RGB").resize((768, 1024))
human_image_orig = human_dict["background"].convert("RGB")
if use_auto_crop:
width, height = human_image_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left, top = (width - target_width) / 2, (height - target_height) / 2
right, bottom = (width + target_width) / 2, (height + target_height) / 2
cropped_img = human_image_orig.crop((left, top, right, bottom)).resize((768, 1024))
else:
cropped_img = human_image_orig.resize((768, 1024))
if use_auto_mask:
keypoints = openpose_model(cropped_img.resize((384, 512)))
model_parse, _ = parsing_model(cropped_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(human_dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(cropped_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_image_arg = _apply_exif_orientation(cropped_img.resize((384, 512)))
human_image_arg = convert_PIL_to_numpy(human_image_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_image = args.func(args, human_image_arg)
pose_image = Image.fromarray(pose_image[:, :, ::-1]).resize((768, 1024))
with torch.no_grad(), torch.cuda.amp.autocast():
prompt = "model is wearing " + garment_description
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt
)
prompt_c = "a photo of " + garment_description
negative_prompt_c = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds_c, _, _, _ = pipe.encode_prompt(
prompt_c, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt_c
)
pose_image = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(pose_image).unsqueeze(0).to(device, torch.float16)
garment_tensor = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])(garment_image).unsqueeze(0).to(device, torch.float16)
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pose_image=pose_image,
garment_image=garment_tensor,
mask_image=mask_gray.to(device, torch.float16),
generator=torch.Generator(device).manual_seed(seed),
num_inference_steps=denoise_steps
).images
if images:
output_image = images[0]
output_base64 = encode_image_to_base64(output_image)
mask_image = mask
mask_base64 = encode_image_to_base64(mask_image)
return output_image, mask_image
else:
raise ValueError("Failed to generate image")
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/webp')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
@app.route('/tryon', methods=['POST'])
def tryon_handler():
try:
data = request.json
human_image = decode_image_from_base64(data['human_image'])
garment_image = decode_image_from_base64(data['garment_image'])
description = data.get('description')
use_auto_mask = data.get('use_auto_mask', True)
use_auto_crop = data.get('use_auto_crop', False)
denoise_steps = int(data.get('denoise_steps', 30))
seed = int(data.get('seed', 42))
category = data.get('category', 'upper_body')
human_dict = {
'background': human_image,
'layers': [human_image] if not use_auto_mask else None,
'composite': None
}
clear_gpu_memory()
output_image, mask_image = start_tryon(
human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, category
)
output_base64 = encode_image_to_base64(output_image)
mask_base64 = encode_image_to_base64(mask_image)
return jsonify({
'output_image': output_base64,
'mask_image': mask_base64
})
except Exception as e:
logging.error(f"Error in tryon_handler: {e}")
return jsonify({'error': str(e)}), 500
if __name__ == "__main__":
load_models() # Charge les modèles au démarrage
app.run(host='0.0.0.0', port=7860)