Spaces:
Saad0KH
/
Running on Zero

Saad0KH commited on
Commit
3e611b0
·
verified ·
1 Parent(s): 62072ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -76
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  from flask import Flask, request, jsonify,send_file
3
  from PIL import Image
4
  from io import BytesIO
@@ -32,107 +33,70 @@ from torchvision.transforms.functional import to_pil_image
32
 
33
  app = Flask(__name__)
34
 
 
35
  base_path = 'yisol/IDM-VTON'
36
- example_path = os.path.join(os.path.dirname(__file__), 'example')
37
 
 
38
  unet = UNet2DConditionModel.from_pretrained(
39
  base_path,
40
  subfolder="unet",
41
  torch_dtype=torch.float16,
42
  force_download=False
43
  )
44
- unet.requires_grad_(False)
45
  tokenizer_one = AutoTokenizer.from_pretrained(
46
  base_path,
47
  subfolder="tokenizer",
48
- revision=None,
49
  use_fast=False,
50
  force_download=False
51
  )
52
  tokenizer_two = AutoTokenizer.from_pretrained(
53
  base_path,
54
  subfolder="tokenizer_2",
55
- revision=None,
56
  use_fast=False,
57
  force_download=False
58
  )
59
  noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
60
-
61
- text_encoder_one = CLIPTextModel.from_pretrained(
62
- base_path,
63
- subfolder="text_encoder",
64
- torch_dtype=torch.float16,
65
- force_download=False
66
- )
67
- text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
68
- base_path,
69
- subfolder="text_encoder_2",
70
- torch_dtype=torch.float16,
71
- force_download=False
72
- )
73
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
74
- base_path,
75
- subfolder="image_encoder",
76
- torch_dtype=torch.float16,
77
- force_download=False
78
- )
79
- vae = AutoencoderKL.from_pretrained(base_path,
80
- subfolder="vae",
81
- torch_dtype=torch.float16,
82
- force_download=False
83
- )
84
-
85
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
86
- base_path,
87
- subfolder="unet_encoder",
88
- torch_dtype=torch.float16,
89
- force_download=False
90
- )
91
 
92
  parsing_model = Parsing(0)
93
  openpose_model = OpenPose(0)
94
 
95
- UNet_Encoder.requires_grad_(False)
96
- image_encoder.requires_grad_(False)
97
- vae.requires_grad_(False)
98
- unet.requires_grad_(False)
99
- text_encoder_one.requires_grad_(False)
100
- text_encoder_two.requires_grad_(False)
101
- tensor_transfrom = transforms.Compose(
102
- [
103
- transforms.ToTensor(),
104
- transforms.Normalize([0.5], [0.5]),
105
- ]
106
- )
107
-
108
  pipe = TryonPipeline.from_pretrained(
109
- base_path,
110
- unet=unet,
111
- vae=vae,
112
- feature_extractor= CLIPImageProcessor(),
113
- text_encoder = text_encoder_one,
114
- text_encoder_2 = text_encoder_two,
115
- tokenizer = tokenizer_one,
116
- tokenizer_2 = tokenizer_two,
117
- scheduler = noise_scheduler,
118
- image_encoder=image_encoder,
119
- torch_dtype=torch.float16,
120
- force_download=False
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
 
 
 
 
 
 
124
  def pil_to_binary_mask(pil_image, threshold=0):
125
  np_image = np.array(pil_image)
126
  grayscale_image = Image.fromarray(np_image).convert("L")
127
  binary_mask = np.array(grayscale_image) > threshold
128
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
129
- for i in range(binary_mask.shape[0]):
130
- for j in range(binary_mask.shape[1]):
131
- if binary_mask[i, j]:
132
- mask[i, j] = 1
133
- mask = (mask * 255).astype(np.uint8)
134
- output_mask = Image.fromarray(mask)
135
- return output_mask
136
 
137
  def get_image_from_url(url):
138
  try:
@@ -157,8 +121,7 @@ def encode_image_to_base64(img):
157
  try:
158
  buffered = BytesIO()
159
  img.save(buffered, format="PNG")
160
- img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
161
- return img_str
162
  except Exception as e:
163
  logging.error(f"Error encoding image: {e}")
164
  raise
@@ -198,7 +161,7 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
198
  mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
199
  mask = mask.resize((768, 1024))
200
  else:
201
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
202
  mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
203
  mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
204
 
@@ -273,7 +236,7 @@ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denois
273
  human_img_orig.paste(out_img, (int(left), int(top)))
274
  return human_img_orig, mask_gray
275
  else:
276
- return images[0], mask_gray
277
 
278
 
279
  @app.route('/tryon-v2', methods=['POST'])
@@ -283,7 +246,6 @@ def tryon_v2():
283
  human_image_data = data['human_image']
284
  garment_image_data = data['garment_image']
285
 
286
- # Process images (base64 ou URL)
287
  human_image = process_image(human_image_data)
288
  garment_image = process_image(garment_image_data)
289
 
@@ -294,20 +256,22 @@ def tryon_v2():
294
  seed = int(data.get('seed', random.randint(0, 9999999)))
295
  categorie = data.get('categorie', 'upper_body')
296
 
297
- # Vérifie si 'mask_image' est présent dans les données
298
  mask_image = None
299
  if 'mask_image' in data:
300
  mask_image_data = data['mask_image']
301
  mask_image = process_image(mask_image_data)
302
-
303
  human_dict = {
304
  'background': human_image,
305
  'layers': [mask_image] if not use_auto_mask else None,
306
  'composite': None
307
  }
308
- output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed , categorie)
 
309
  return jsonify({
310
- 'image_id': save_image(output_image)
 
 
311
  })
312
 
313
  def clear_gpu_memory():
@@ -350,6 +314,15 @@ def tryon():
350
  })
351
 
352
 
 
 
 
 
 
 
 
 
 
353
 
354
  # Route pour récupérer l'image générée
355
  @app.route('/api/get_image/<image_id>', methods=['GET'])
 
1
  import os
2
+ import requests
3
  from flask import Flask, request, jsonify,send_file
4
  from PIL import Image
5
  from io import BytesIO
 
33
 
34
  app = Flask(__name__)
35
 
36
+ # Chemins de base pour les modèles
37
  base_path = 'yisol/IDM-VTON'
 
38
 
39
+ # Chargement des modèles
40
  unet = UNet2DConditionModel.from_pretrained(
41
  base_path,
42
  subfolder="unet",
43
  torch_dtype=torch.float16,
44
  force_download=False
45
  )
 
46
  tokenizer_one = AutoTokenizer.from_pretrained(
47
  base_path,
48
  subfolder="tokenizer",
 
49
  use_fast=False,
50
  force_download=False
51
  )
52
  tokenizer_two = AutoTokenizer.from_pretrained(
53
  base_path,
54
  subfolder="tokenizer_2",
 
55
  use_fast=False,
56
  force_download=False
57
  )
58
  noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
59
+ text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
60
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
61
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
62
+ vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
63
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  parsing_model = Parsing(0)
66
  openpose_model = OpenPose(0)
67
 
68
+ # Préparation du pipeline Tryon
 
 
 
 
 
 
 
 
 
 
 
 
69
  pipe = TryonPipeline.from_pretrained(
70
+ base_path,
71
+ unet=unet,
72
+ vae=vae,
73
+ feature_extractor=CLIPImageProcessor(),
74
+ text_encoder=text_encoder_one,
75
+ text_encoder_2=text_encoder_two,
76
+ tokenizer=tokenizer_one,
77
+ tokenizer_2=tokenizer_two,
78
+ scheduler=noise_scheduler,
79
+ image_encoder=image_encoder,
80
+ torch_dtype=torch.float16,
81
+ force_download=False
82
  )
83
  pipe.unet_encoder = UNet_Encoder
84
 
85
+ # Utilisation des transformations d'images
86
+ tensor_transfrom = transforms.Compose([
87
+ transforms.ToTensor(),
88
+ transforms.Normalize([0.5], [0.5]),
89
+ ])
90
+
91
  def pil_to_binary_mask(pil_image, threshold=0):
92
  np_image = np.array(pil_image)
93
  grayscale_image = Image.fromarray(np_image).convert("L")
94
  binary_mask = np.array(grayscale_image) > threshold
95
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
96
+ mask[binary_mask] = 1
97
+ return Image.fromarray((mask * 255).astype(np.uint8))
98
+
99
+
 
 
 
100
 
101
  def get_image_from_url(url):
102
  try:
 
121
  try:
122
  buffered = BytesIO()
123
  img.save(buffered, format="PNG")
124
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
 
125
  except Exception as e:
126
  logging.error(f"Error encoding image: {e}")
127
  raise
 
161
  mask, mask_gray = get_mask_location('hd', categorie , model_parse, keypoints)
162
  mask = mask.resize((768, 1024))
163
  else:
164
+ mask = dict['layers'][0].convert("RGB").resize((768, 1024))#pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
165
  mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
166
  mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
167
 
 
236
  human_img_orig.paste(out_img, (int(left), int(top)))
237
  return human_img_orig, mask_gray
238
  else:
239
+ return images[0], mask_gray , mask
240
 
241
 
242
  @app.route('/tryon-v2', methods=['POST'])
 
246
  human_image_data = data['human_image']
247
  garment_image_data = data['garment_image']
248
 
 
249
  human_image = process_image(human_image_data)
250
  garment_image = process_image(garment_image_data)
251
 
 
256
  seed = int(data.get('seed', random.randint(0, 9999999)))
257
  categorie = data.get('categorie', 'upper_body')
258
 
 
259
  mask_image = None
260
  if 'mask_image' in data:
261
  mask_image_data = data['mask_image']
262
  mask_image = process_image(mask_image_data)
263
+
264
  human_dict = {
265
  'background': human_image,
266
  'layers': [mask_image] if not use_auto_mask else None,
267
  'composite': None
268
  }
269
+
270
+ output_image, mask_image , mask = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
271
  return jsonify({
272
+ 'image_id': save_image(output_image),
273
+ 'mask_gray_id' : save_image(mask_image),
274
+ 'mask_id' : save_image(mask)
275
  })
276
 
277
  def clear_gpu_memory():
 
314
  })
315
 
316
 
317
+ # Route index
318
+ @app.route('/', methods=['GET'])
319
+ def get_image():
320
+
321
+ # Renvoyer l'image
322
+ try:
323
+ return 'Welcome to IDM VTON API'
324
+ except FileNotFoundError:
325
+ return jsonify({'error': 'Image not found'}), 404
326
 
327
  # Route pour récupérer l'image générée
328
  @app.route('/api/get_image/<image_id>', methods=['GET'])