File size: 10,723 Bytes
f056744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import abc
import gc
import math
import numbers
from collections import defaultdict
from difflib import SequenceMatcher
from typing import Dict, List, Optional, Tuple, Union

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import FluxAttnProcessor2_0
from PIL import Image
from scipy.ndimage import binary_dilation
from skimage.filters import threshold_otsu


class AttentionControl(abc.ABC):
    def __init__(self,):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0

        self.get_model_info()
    
    def get_model_info(self):
        t5_dim = 512
        latent_dim = 4096
        attn_dim = t5_dim + latent_dim
        index_all = torch.arange(attn_dim)
        t5_index, latent_index = index_all.split([t5_dim, latent_dim])
        patch_order = ['t5', 'latent']
        
        self.model_info = {
            't5_dim': t5_dim,
            'latent_dim': latent_dim,
            'attn_dim': attn_dim,
            't5_index': t5_index,
            'latent_index': latent_index,
            'patch_order': patch_order
        }

    def step_callback(self, x_t):
        return x_t

    def between_steps(self):
        return

    @abc.abstractmethod
    def forward(self, q, k, v, place_in_transformer: str):
        raise NotImplementedError

    @torch.no_grad()
    def __call__(self, q, k, v, place_in_transformer: str):
        hs = self.forward(q, k, v, place_in_transformer)
    
        self.cur_att_layer += 1
        
        if self.cur_att_layer == self.num_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1

            self.between_steps()
        return hs

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def scaled_dot_product_attention(self, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
        L, S = query.size(-2), key.size(-2)
        scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
        attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
        if is_causal:
            assert attn_mask is None
            temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
            attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
            attn_bias.to(query.dtype)

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
            else:
                attn_bias += attn_mask

        attn_weight = query @ key.transpose(-2, -1) * scale_factor
        attn_weight += attn_bias
        attn_weight = torch.softmax(attn_weight, dim=-1)
        attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
        return attn_weight

    def split_attn(self, attn, q='latent', k='latent'):
        patch_order = self.model_info['patch_order']
        t5_dim = self.model_info['t5_dim']
        latent_dim = self.model_info['latent_dim']
        clip_dim = self.model_info.get('clip_dim', None)

        idx_q = patch_order.index(q)
        idx_k = patch_order.index(k)
        split = [t5_dim, latent_dim]
        
        return attn.split(split, dim=-2)[idx_q].split(split, dim=-1)[idx_k].clone()


class AttentionAdapter(AttentionControl):
    def __init__(
        self, 
        ca_layer_list=list(range(13,45)),
        sa_layer_list=list(range(22,45)),
        method='replace_topk',
        topk=1,
        text_scale=1,
        mappers=None,
        alphas=None,
        ca_steps=10,
        sa_steps=7,
        save_source_ca=False,
        save_target_ca=False,
        use_sa_replace=True,
        attn_adj_from=0,
    ):
        super(AttentionAdapter, self).__init__()
        self.ca_layer_list = ca_layer_list
        self.sa_layer_list = sa_layer_list
        self.method = method
        self.topk = topk
        self.text_scale = text_scale
        self.use_sa_replace = use_sa_replace

        self.ca_steps = ca_steps
        self.sa_steps = sa_steps

        self.mappers = mappers
        self.alphas = alphas

        self.save_source_ca = save_source_ca
        self.save_target_ca = save_target_ca

        self.attn_adj_from = attn_adj_from

        self.source_ca = None

        self.source_attn = {}

    @staticmethod
    def get_empty_store():
        return defaultdict(list)
    
    def refine_ca(self, source_ca, target_ca):
        source_ca_replace = source_ca[:, :, self.mappers].permute(2, 0, 1, 3)
        new_ca = source_ca_replace * self.alphas + target_ca * (1 - self.alphas) * self.text_scale
        return new_ca

    def replace_ca(self, source_ca, target_ca):
        new_ca = torch.einsum('hpw,bwn->bhpn', source_ca, self.mappers)
        return new_ca
    
    def get_index_from_source(self, attn, topk):
        if self.method == 'replace_topk':
            sa_max = torch.topk(attn, k=topk, dim=-1)[0][..., [-1]]
            idx_from_source = (attn > sa_max)
        elif self.method == 'replace_z':
            log_attn = torch.log(attn)
            idx_from_source = log_attn > (log_attn.mean(-1, keepdim=True) + self.z_value * log_attn.std(-1, keepdim=True))
        else:
            print("No method")
        return idx_from_source

    def forward(self, q, k, v, place_in_transformer: str):
        layer_index = int(place_in_transformer.split('_')[-1])

        use_ca_replace = False
        use_sa_replace = False
        if (layer_index in self.ca_layer_list) and (self.cur_step in range(0, self.ca_steps)):
            if self.mappers is not None:
                use_ca_replace = True
        if (layer_index in self.sa_layer_list) and (self.cur_step in range(0, self.sa_steps)):
            use_sa_replace = True

        if not (use_sa_replace or use_ca_replace):
            return F.scaled_dot_product_attention(q, k, v)
        
        latent_index = self.model_info['latent_index']
        t5_index = self.model_info['t5_index']
        clip_index = self.model_info.get('clip_index', None)

        # Get attention map first
        attn = self.scaled_dot_product_attention(q, k, v)
        source_attn = attn[:1]
        target_attn = attn[1:]
        source_hs = source_attn @ v[:1] 
            
        source_ca = self.split_attn(source_attn, 'latent', 't5')
        target_ca = self.split_attn(target_attn, 'latent', 't5')

        if use_ca_replace:
            if self.save_source_ca:
                if layer_index == self.ca_layer_list[0]:
                    self.source_ca = source_ca / source_ca.sum(dim=-1, keepdim=True)
                else:
                    self.source_ca += source_ca / source_ca.sum(dim=-1, keepdim=True)

            if self.save_target_ca:
                if layer_index == self.ca_layer_list[0]:
                    self.target_ca = target_ca / target_ca.sum(dim=-1, keepdim=True)
                else:
                    self.target_ca += target_ca / target_ca.sum(dim=-1, keepdim=True)

            if self.alphas is None:
                target_ca = self.replace_ca(source_ca[0], target_ca)
            else:
                target_ca = self.refine_ca(source_ca[0], target_ca)

        target_sa = self.split_attn(target_attn, 'latent', 'latent')
        if use_sa_replace:
            if self.cur_step < self.attn_adj_from:
                topk = 1
            else:
                topk = self.topk

            if self.method == 'base':
                new_sa = self.split_attn(target_attn, 'latent', 'latent')
            else:
                source_sa = self.split_attn(source_attn, 'latent', 'latent')
                if topk <= 1:
                    new_sa = source_sa.clone().repeat(len(target_attn), 1, 1, 1)
                else:
                    idx_from_source = self.get_index_from_source(source_sa, topk)
                    # Get top-k attention values from target SA
                    new_sa = target_sa.clone()
                    new_sa.mul_(idx_from_source)
                    # Normalize
                    new_sa.div_(new_sa.sum(-1,keepdim=True))
                    new_sa.nan_to_num_(0)
                    new_sa.mul_((source_sa * idx_from_source).sum(-1, keepdim=True))
                    # Get rest attention vlaues from source SA
                    new_sa.add_(source_sa * idx_from_source.logical_not())
                    # Additional normalize (Optional)
                    # new_sa.mul_((target_sa.sum(dim=(-1), keepdim=True) / new_sa.sum(dim=(-1), keepdim=True)))
            target_sa = new_sa

        target_l_to_l = target_sa @ v[1:, :, latent_index]
        target_l_to_t = target_ca @ v[1:, :, t5_index]
        
        if self.alphas is None:
            target_latent_hs = target_l_to_l + target_l_to_t * self.text_scale
        else:
            # text scaling is already performed in self.refine_ca()
            target_latent_hs = target_l_to_l + target_l_to_t

        target_text_hs = target_attn[:,:, t5_index,:] @ v[1:]
        target_hs = torch.cat([target_text_hs, target_latent_hs], dim=-2)
        hs = torch.cat([source_hs, target_hs])
        return hs

    def reset(self):
        super(AttentionAdapter, self).reset()
        del self.source_attn
        gc.collect()
        torch.cuda.empty_cache()

        self.source_attn = {}

class AttnCollector:
    def __init__(self, transformer, controller, attn_processor_class, layer_list=[]):
        self.transformer = transformer
        self.controller = controller
        self.attn_processor_class = attn_processor_class

    def restore_orig_attention(self):
        attn_procs = {}
        place=''
        for i, (name, attn_proc) in enumerate(self.transformer.attn_processors.items()):
            attn_proc = self.attn_processor_class(
                controller=None, place_in_transformer=place,
            )
            attn_procs[name] = attn_proc
        self.transformer.set_attn_processor(attn_procs)
        self.controller.num_att_layers = 0
            
    def register_attention_control(self):
        attn_procs = {}
        count = 0
        for i, (name, attn_proc) in enumerate(self.transformer.attn_processors.items()):
            if 'single' in name:
                place = f'single_{i}'
            else:
                place = f'joint_{i}'
            count += 1
            
            attn_proc = self.attn_processor_class(
                controller=self.controller, place_in_transformer=place,
            )
            attn_procs[name] = attn_proc
            
        self.transformer.set_attn_processor(attn_procs)
        self.controller.num_att_layers = count