File size: 17,553 Bytes
d6e219c
f1948f2
 
e46fbeb
a0d733c
 
1ef0cee
 
 
 
 
e46fbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2376828
 
 
 
 
 
 
e46fbeb
 
 
2376828
 
 
 
 
 
 
 
e46fbeb
 
 
 
 
 
 
2376828
 
e46fbeb
 
 
 
 
 
 
 
 
 
 
 
96f5bc2
2376828
96f5bc2
a0d733c
 
 
 
 
 
 
 
e46fbeb
a0d733c
 
 
 
 
 
 
 
2376828
 
e46fbeb
2376828
 
 
 
96f5bc2
 
2376828
96f5bc2
 
 
 
 
 
 
e185e86
a0d733c
 
 
 
2376828
 
 
 
a0d733c
e46fbeb
 
a0d733c
3eb0e20
 
e46fbeb
3eb0e20
 
 
e46fbeb
 
3eb0e20
 
 
 
 
e46fbeb
 
 
 
 
 
a0d733c
e46fbeb
 
 
 
 
 
 
 
a0d733c
2376828
 
e46fbeb
2376828
e46fbeb
 
 
2376828
a0d733c
 
e46fbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88862a6
e46fbeb
2b8d8a7
e46fbeb
 
7f5cc04
e46fbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f5bc2
a0d733c
e46fbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b40c9cf
a0d733c
e46fbeb
 
 
 
 
 
 
 
 
 
2376828
 
b40c9cf
e46fbeb
 
 
 
 
 
 
 
 
 
 
 
b40c9cf
e46fbeb
 
 
 
 
 
 
b40c9cf
 
e46fbeb
 
 
b40c9cf
e46fbeb
2376828
e46fbeb
 
b40c9cf
e46fbeb
 
b40c9cf
 
e46fbeb
 
 
 
2376828
e46fbeb
 
 
 
2376828
 
e46fbeb
 
2376828
96f5bc2
2376828
 
e46fbeb
 
 
 
 
 
2376828
 
96f5bc2
2376828
e46fbeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import gradio as gr
import torch
import numpy as np
from transformers import pipeline, RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime

# --- Timeline Visualization Function ---
def generate_abuse_score_chart(dates, scores, labels):
    import matplotlib.pyplot as plt
    import io
    from PIL import Image
    from datetime import datetime

    try:
        parsed_dates = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
    except Exception:
        parsed_dates = list(range(len(dates)))

    fig, ax = plt.subplots(figsize=(8, 3))
    ax.plot(parsed_dates, scores, marker='o', linestyle='-', color='darkred', linewidth=2)

    for i, (x, y) in enumerate(zip(parsed_dates, scores)):
        label = labels[i]
        ax.text(x, y + 2, f"{label}\n{int(y)}%", ha='center', fontsize=8, color='black')

    ax.set_title("Abuse Intensity Over Time")
    ax.set_xlabel("Date")
    ax.set_ylabel("Abuse Score (%)")
    ax.set_ylim(0, 105)
    ax.grid(True)
    plt.tight_layout()

    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    return Image.open(buf)
# --- SST Sentiment Model ---
sst_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")

# --- Abuse Model ---
model_name = "SamanthaStorm/autotrain-jlpi4-mllvp"
model = RobertaForSequenceClassification.from_pretrained(model_name)
tokenizer = RobertaTokenizer.from_pretrained(model_name)

LABELS = [
    "blame shifting", "contradictory statements", "control", "dismissiveness",
    "gaslighting", "guilt tripping", "insults", "obscure language",
    "projection", "recovery phase", "threat"
]

THRESHOLDS = {
    "blame shifting": 0.3, "contradictory statements": 0.36, "control": 0.48, "dismissiveness": 0.45,
    "gaslighting": 0.30, "guilt tripping": 0.20, "insults": 0.34, "obscure language": 0.25,
    "projection": 0.35, "recovery phase": 0.25, "threat": 0.25
}

PATTERN_WEIGHTS = {
    "gaslighting": 1.3,
    "control": 1.2,
    "dismissiveness": 0.8,
    "blame shifting": 0.8,
    "contradictory statements": 0.75,
    "threat": 1.5  # 🔧 New: raise weight for threat
}
RISK_STAGE_LABELS = {
    1: "🌀 Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
    2: "🔥 Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
    3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attempt—apologies or emotional repair without accountability.",
    4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}

ESCALATION_QUESTIONS = [
    ("Partner has access to firearms or weapons", 4),
    ("Partner threatened to kill you", 3),
    ("Partner threatened you with a weapon", 3),
    ("Partner has ever choked you, even if you considered it consensual at the time", 4),
    ("Partner injured or threatened your pet(s)", 3),
    ("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
    ("Partner forced or coerced you into unwanted sexual acts", 3),
    ("Partner threatened to take away your children", 2),
    ("Violence has increased in frequency or severity", 3),
    ("Partner monitors your calls/GPS/social media", 2)
]
DARVO_PATTERNS = {
    "blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
}
DARVO_MOTIFS = [
    "I never said that.", "You’re imagining things.", "That never happened.",
    "You’re making a big deal out of nothing.", "It was just a joke.", "You’re too sensitive.",
    "I don’t know what you’re talking about.", "You’re overreacting.", "I didn’t mean it that way.",
    "You’re twisting my words.", "You’re remembering it wrong.", "You’re always looking for something to complain about.",
    "You’re just trying to start a fight.", "I was only trying to help.", "You’re making things up.",
    "You’re blowing this out of proportion.", "You’re being paranoid.", "You’re too emotional.",
    "You’re always so dramatic.", "You’re just trying to make me look bad.",

    "You’re crazy.", "You’re the one with the problem.", "You’re always so negative.",
    "You’re just trying to control me.", "You’re the abusive one.", "You’re trying to ruin my life.",
    "You’re just jealous.", "You’re the one who needs help.", "You’re always playing the victim.",
    "You’re the one causing all the problems.", "You’re just trying to make me feel guilty.",
    "You’re the one who can’t let go of the past.", "You’re the one who’s always angry.",
    "You’re the one who’s always complaining.", "You’re the one who’s always starting arguments.",
    "You’re the one who’s always making things worse.", "You’re the one who’s always making me feel bad.",
    "You’re the one who’s always making me look like the bad guy.",
    "You’re the one who’s always making me feel like a failure.",
    "You’re the one who’s always making me feel like I’m not good enough.",

    "I can’t believe you’re doing this to me.", "You’re hurting me.",
    "You’re making me feel like a terrible person.", "You’re always blaming me for everything.",
    "You’re the one who’s abusive.", "You’re the one who’s controlling.", "You’re the one who’s manipulative.",
    "You’re the one who’s toxic.", "You’re the one who’s gaslighting me.",
    "You’re the one who’s always putting me down.", "You’re the one who’s always making me feel bad.",
    "You’re the one who’s always making me feel like I’m not good enough.",
    "You’re the one who’s always making me feel like I’m the problem.",
    "You’re the one who’s always making me feel like I’m the bad guy.",
    "You’re the one who’s always making me feel like I’m the villain.",
    "You’re the one who’s always making me feel like I’m the one who needs to change.",
    "You’re the one who’s always making me feel like I’m the one who’s wrong.",
    "You’re the one who’s always making me feel like I’m the one who’s crazy.",
    "You’re the one who’s always making me feel like I’m the one who’s abusive.",
    "You’re the one who’s always making me feel like I’m the one who’s toxic."
]
def detect_contradiction(message):
    patterns = [
        (r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
        (r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
        (r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
        (r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE),
        (r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
        (r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE)
    ]
    return any(re.search(p, message, flags) for p, flags in patterns)
    
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
    pattern_hits = len([p for p in patterns if p in DARVO_PATTERNS])
    pattern_score = pattern_hits / len(DARVO_PATTERNS)
    
    sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)

    motif_hits = len([
        motif for motif in motifs_found
        if any(phrase.lower() in motif.lower() for phrase in DARVO_MOTIFS)
    ])
    motif_score = motif_hits / len(DARVO_MOTIFS)

    contradiction_score = 1.0 if contradiction_flag else 0.0

    return round(min(
        0.3 * pattern_score +
        0.3 * sentiment_shift_score +
        0.25 * motif_score +
        0.15 * contradiction_score, 1.0
    ), 3)
def detect_weapon_language(text):
    weapon_keywords = [
        "knife", "knives", "stab", "cut you", "cutting",
        "gun", "shoot", "rifle", "firearm", "pistol",
        "bomb", "blow up", "grenade", "explode",
        "weapon", "armed", "loaded", "kill you", "take you out"
    ]
    text_lower = text.lower()
    return any(word in text_lower for word in weapon_keywords)
def get_risk_stage(patterns, sentiment):
    if "threat" in patterns or "insults" in patterns:
        return 2
    elif "recovery phase" in patterns:
        return 3
    elif "control" in patterns or "guilt tripping" in patterns:
        return 1
    elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
        return 4
    return 1

def generate_risk_snippet(abuse_score, top_label, escalation_score, stage):
    if abuse_score >= 85 or escalation_score >= 16:
        risk_level = "high"
    elif abuse_score >= 60 or escalation_score >= 8:
        risk_level = "moderate"
    elif stage == 2 and abuse_score >= 40:
        risk_level = "moderate"  # 🔧 New rule for escalation stage
    else:
        risk_level = "low"
    pattern_label = top_label.split(" – ")[0]
    pattern_score = top_label.split(" – ")[1] if " – " in top_label else ""

    WHY_FLAGGED = {
        "control": "This message may reflect efforts to restrict someone’s autonomy, even if it's framed as concern or care.",
        "gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
        "dismissiveness": "This message may include belittling, invalidating, or ignoring the other person’s experience.",
        "insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
        "threat": "This message includes threatening language, which is a strong predictor of harm.",
        "blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
        "guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
        "recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
        "projection": "This message may involve attributing the abuser’s own behaviors to the victim.",
        "default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
    }

    explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])

    base = f"\n\n🛑 Risk Level: {risk_level.capitalize()}\n"
    base += f"This message shows strong indicators of **{pattern_label}**. "

    if risk_level == "high":
        base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
    elif risk_level == "moderate":
        base += "There are signs of emotional pressure or indirect control that may escalate if repeated.\n"
    else:
        base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"

    base += f"\n💡 *Why this might be flagged:*\n{explanation}\n"
    base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
    base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."

    return base
def analyze_single_message(text, thresholds):
    motif_hits, matched_phrases = detect_motifs(text)
    result = sst_pipeline(text)[0]
    sentiment = "supportive" if result['label'] == "POSITIVE" else "undermining"
    sentiment_score = result['score'] if sentiment == "undermining" else 0.0
    weapon_flag = detect_weapon_language(text)
    adjusted_thresholds = {
        k: v + 0.05 if sentiment == "supportive" else v
        for k, v in thresholds.items()
    }

    contradiction_flag = detect_contradiction(text)

    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()

    threshold_labels = [
        label for label, score in zip(LABELS, scores)
        if score > adjusted_thresholds[label]
]

    motifs = [phrase for _, phrase in matched_phrases]

    darvo_score = calculate_darvo_score(
        threshold_labels,
        sentiment_before=0.0,
        sentiment_after=sentiment_score,
        motifs_found=motifs,
        contradiction_flag=contradiction_flag
)
    top_patterns = sorted(
        [(label, score) for label, score in zip(LABELS, scores)],
        key=lambda x: x[1],
        reverse=True
    )[:2]

    # Compute weighted average across all patterns (not just top 2)
    weighted_total = 0.0
    weight_sum = 0.0
    for label, score in zip(LABELS, scores):
        weight = PATTERN_WEIGHTS.get(label, 1.0)
        weighted_total += score * weight
        weight_sum += weight

    abuse_score_raw = (weighted_total / weight_sum) * 100
    stage = get_risk_stage(threshold_labels, sentiment)
    if weapon_flag:
        abuse_score_raw = min(abuse_score_raw + 25, 100)  # boost intensity
    if weapon_flag and stage < 2:
        stage = 2
    if weapon_flag:
        print("⚠️ Weapon-related language detected.")

    if "threat" in threshold_labels or "control" in threshold_labels or "insults" in threshold_labels:
        abuse_score = min(abuse_score_raw, 100)
    else:
        abuse_score = min(abuse_score_raw, 95)

    

    print("\n--- Debug Info ---")
    print(f"Text: {text}")
    print(f"Sentiment: {sentiment} (raw: {result['label']}, score: {result['score']:.3f})")
    print("Abuse Pattern Scores:")
    for label, score in zip(LABELS, scores):
        passed = "✅" if score > adjusted_thresholds[label] else "❌"
        print(f"  {label:25}{score:.3f} {passed}")
    print(f"Motifs: {motifs}")
    print(f"Contradiction: {contradiction_flag}")
    print("------------------\n")

    return abuse_score, threshold_labels, top_patterns, result, stage, darvo_score

def analyze_composite(msg1, date1, msg2, date2, msg3, date3, *answers_and_none):
    none_selected_checked = answers_and_none[-1]
    responses_checked = any(answers_and_none[:-1])
    none_selected = not responses_checked and none_selected_checked

    if none_selected:
        escalation_score = None
        risk_level = "unknown"
    else:
        escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
        risk_level = (
            "High" if escalation_score >= 16 else
            "Moderate" if escalation_score >= 8 else
            "Low"
        )

    messages = [msg1, msg2, msg3]
    dates = [date1, date2, date3]
    active = [(m, d) for m, d in zip(messages, dates) if m.strip()]
    if not active:
        return "Please enter at least one message."

    results = [(analyze_single_message(m, THRESHOLDS.copy()), d) for m, d in active]
    abuse_scores = [r[0][0] for r in results]
    top_labels = [r[0][2][0][0] for r in results]
    top_scores = [r[0][2][0][1] for r in results]
    sentiments = [r[0][3]['label'] for r in results]
    stages = [r[0][4] for r in results]
    darvo_scores = [r[0][5] for r in results]
    dates_used = [r[1] or "Undated" for r in results]  # Store dates for future mapping

    composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
    top_label = f"{top_labels[0]}{int(round(top_scores[0] * 100))}%"

    most_common_stage = max(set(stages), key=stages.count)
    stage_text = RISK_STAGE_LABELS[most_common_stage]

    avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
    darvo_blurb = ""
    if avg_darvo > 0.25:
        level = "moderate" if avg_darvo < 0.65 else "high"
        darvo_blurb = f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."

    out = f"Abuse Intensity: {composite_abuse}%\n"
    out += "📊 This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"

    if escalation_score is None:
        out += "Escalation Potential: Unknown (Checklist not completed)\n"
        out += "🔍 *This section was not completed. Escalation potential is unknown.*\n\n"
    else:
        out += f"Escalation Potential: {risk_level} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})\n"
        out += "🚨 This indicates how many serious risk factors are present based on your answers to the safety checklist.\n"

    out += generate_risk_snippet(composite_abuse, top_label, escalation_score if escalation_score is not None else 0, most_common_stage)
    out += f"\n\n{stage_text}"
    out += darvo_blurb

    pattern_labels = [r[0][2][0][0] for r in results]  # top label for each message
    timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
    return out, timeline_image
    
message_date_pairs = [
    (
        gr.Textbox(label=f"Message {i+1}"),
        gr.Textbox(label=f"Date {i+1} (optional)", placeholder="YYYY-MM-DD")
    )
    for i in range(3)
]
textbox_inputs = [item for pair in message_date_pairs for item in pair]
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
none_box = gr.Checkbox(label="None of the above")

iface = gr.Interface(
    fn=analyze_composite,
    inputs=textbox_inputs + quiz_boxes + [none_box],
    outputs=[
        gr.Textbox(label="Results"),
        gr.Image(label="Risk Stage Timeline", type="pil")
    ],
    title="Abuse Pattern Detector + Escalation Quiz",
    allow_flagging="manual"
)

if __name__ == "__main__":
    iface.launch().