Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline as hf_pipeline | |
import re | |
import matplotlib.pyplot as plt | |
import io | |
from PIL import Image | |
from datetime import datetime | |
from torch.nn.functional import sigmoid | |
from collections import Counter | |
import logging | |
import traceback | |
import json | |
# Set up logging | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
# Device configuration | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
logger.info(f"Using device: {device}") | |
# Set up custom logging | |
class CustomFormatter(logging.Formatter): | |
"""Custom formatter with colors and better formatting""" | |
grey = "\x1b[38;21m" | |
blue = "\x1b[38;5;39m" | |
yellow = "\x1b[38;5;226m" | |
red = "\x1b[38;5;196m" | |
bold_red = "\x1b[31;1m" | |
reset = "\x1b[0m" | |
def format(self, record): | |
# Remove the logger name from the output | |
if record.levelno == logging.DEBUG: | |
return f"{self.blue}{record.getMessage()}{self.reset}" | |
elif record.levelno == logging.INFO: | |
return f"{self.grey}{record.getMessage()}{self.reset}" | |
elif record.levelno == logging.WARNING: | |
return f"{self.yellow}{record.getMessage()}{self.reset}" | |
elif record.levelno == logging.ERROR: | |
return f"{self.red}{record.getMessage()}{self.reset}" | |
elif record.levelno == logging.CRITICAL: | |
return f"{self.bold_red}{record.getMessage()}{self.reset}" | |
return record.getMessage() | |
# Setup logger | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
# Remove any existing handlers | |
logger.handlers = [] | |
# Create console handler with custom formatter | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.DEBUG) | |
ch.setFormatter(CustomFormatter()) | |
logger.addHandler(ch) | |
# Model initialization | |
model_name = "SamanthaStorm/tether-multilabel-v6" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
# sentiment model | |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment-v3").to(device) | |
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment-v3", use_fast=False) | |
sentiment_model.eval() | |
emotion_pipeline = hf_pipeline( | |
"text-classification", | |
model="j-hartmann/emotion-english-distilroberta-base", | |
return_all_scores=True, # Get all emotion scores | |
top_k=None, # Don't limit to top k predictions | |
truncation=True, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
# DARVO model | |
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1").to(device) | |
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False) | |
darvo_model.eval() | |
# Constants and Labels | |
LABELS = [ | |
"recovery phase", "control", "gaslighting", "guilt tripping", "dismissiveness", | |
"blame shifting", "nonabusive", "projection", "insults", | |
"contradictory statements", "obscure language", | |
"veiled threats", "stalking language", "false concern", | |
"false equivalence", "future faking" | |
] | |
SENTIMENT_LABELS = ["supportive", "undermining"] | |
THRESHOLDS = { | |
"recovery phase": 0.278, | |
"control": 0.287, | |
"gaslighting": 0.144, | |
"guilt tripping": 0.220, | |
"dismissiveness": 0.142, | |
"blame shifting": 0.183, | |
"projection": 0.253, | |
"insults": 0.247, | |
"contradictory statements": 0.200, | |
"obscure language": 0.455, | |
"nonabusive": 0.281, | |
# NEW v6 patterns: | |
"veiled threats": 0.310, | |
"stalking language": 0.339, | |
"false concern": 0.334, | |
"false equivalence": 0.317, | |
"future faking": 0.385 | |
} | |
PATTERN_WEIGHTS = { | |
"recovery phase": 0.7, | |
"control": 1.4, | |
"gaslighting": 1.3, | |
"guilt tripping": 1.2, | |
"dismissiveness": 0.9, | |
"blame shifting": 1.0, | |
"projection": 0.5, | |
"insults": 1.4, | |
"contradictory statements": 1.0, | |
"obscure language": 0.9, | |
"nonabusive": 0.0, | |
# NEW v6 patterns: | |
"veiled threats": 1.6, # High weight - very dangerous | |
"stalking language": 1.8, # Highest weight - extremely dangerous | |
"false concern": 1.1, # Moderate weight - manipulative | |
"false equivalence": 1.3, # Enhances DARVO detection | |
"future faking": 0.8 # Lower weight - manipulation tactic | |
} | |
ESCALATION_QUESTIONS = [ | |
("Partner has access to firearms or weapons", 4), | |
("Partner threatened to kill you", 3), | |
("Partner threatened you with a weapon", 3), | |
("Partner has ever choked you, even if you considered it consensual at the time", 4), | |
("Partner injured or threatened your pet(s)", 3), | |
("Partner has broken your things, punched or kicked walls, or thrown things ", 2), | |
("Partner forced or coerced you into unwanted sexual acts", 3), | |
("Partner threatened to take away your children", 2), | |
("Violence has increased in frequency or severity", 3), | |
("Partner monitors your calls/GPS/social media", 2) | |
] | |
RISK_STAGE_LABELS = { | |
1: "π Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.", | |
2: "π₯ Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.", | |
3: "π§οΈ Risk Stage: Reconciliation\nThis message reflects a reset attemptβapologies or emotional repair without accountability.", | |
4: "πΈ Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it." | |
} | |
THREAT_MOTIFS = [ | |
"i'll kill you", "i'm going to hurt you", "you're dead", "you won't survive this", | |
"i'll break your face", "i'll bash your head in", "i'll snap your neck", | |
"i'll come over there and make you shut up", "i'll knock your teeth out", | |
"you're going to bleed", "you want me to hit you?", "i won't hold back next time", | |
"i swear to god i'll beat you", "next time, i won't miss", "i'll make you scream", | |
"i know where you live", "i'm outside", "i'll be waiting", "i saw you with him", | |
"you can't hide from me", "i'm coming to get you", "i'll find you", "i know your schedule", | |
"i watched you leave", "i followed you home", "you'll regret this", "you'll be sorry", | |
"you're going to wish you hadn't", "you brought this on yourself", "don't push me", | |
"you have no idea what i'm capable of", "you better watch yourself", | |
"i don't care what happens to you anymore", "i'll make you suffer", "you'll pay for this", | |
"i'll never let you go", "you're nothing without me", "if you leave me, i'll kill myself", | |
"i'll ruin you", "i'll tell everyone what you did", "i'll make sure everyone knows", | |
"i'm going to destroy your name", "you'll lose everyone", "i'll expose you", | |
"your friends will hate you", "i'll post everything", "you'll be cancelled", | |
"you'll lose everything", "i'll take the house", "i'll drain your account", | |
"you'll never see a dime", "you'll be broke when i'm done", "i'll make sure you lose your job", | |
"i'll take your kids", "i'll make sure you have nothing", "you can't afford to leave me", | |
"don't make me do this", "you know what happens when i'm mad", "you're forcing my hand", | |
"if you just behaved, this wouldn't happen", "this is your fault", | |
"you're making me hurt you", "i warned you", "you should have listened" | |
] | |
# MOVED TO TOP LEVEL - Fixed tone severity mapping | |
TONE_SEVERITY = { | |
# Highest danger tones | |
"obsessive fixation": 4, | |
"menacing calm": 4, | |
"conditional menace": 4, | |
"surveillance intimacy": 4, | |
# High danger tones | |
"predatory concern": 3, | |
"victim cosplay": 3, | |
"entitled rage": 3, | |
"direct threat": 3, | |
# Moderate danger tones | |
"manipulative hope": 2, | |
"false vulnerability": 2, | |
"calculated coldness": 2, | |
"predictive punishment": 2, | |
# Existing tones (keep current mappings) | |
"emotional threat": 3, | |
"forced accountability flip": 3, | |
"performative regret": 2, | |
"coercive warmth": 2, | |
"cold invalidation": 2, | |
"weaponized sadness": 2, | |
"contradictory gaslight": 2, | |
# Low risk tones | |
"neutral": 0, | |
"genuine vulnerability": 0 | |
} | |
# MOVED TO TOP LEVEL - Helper functions | |
def log_emotional_tone_usage(tone_tag, patterns): | |
"""Log tone usage for analytics""" | |
logger.debug(f"π Detected tone tag: {tone_tag} with patterns: {patterns}") | |
# Track dangerous tone combinations | |
dangerous_tones = [ | |
"obsessive fixation", "menacing calm", "predatory concern", | |
"surveillance intimacy", "conditional menace", "victim cosplay" | |
] | |
if tone_tag in dangerous_tones: | |
logger.warning(f"β οΈ Dangerous emotional tone detected: {tone_tag}") | |
def calculate_tone_risk_boost(tone_tag): | |
"""Calculate risk boost based on emotional tone severity""" | |
return TONE_SEVERITY.get(tone_tag, 0) | |
def should_show_safety_planning(abuse_score, escalation_risk, detected_patterns): | |
"""Check if we should show safety planning""" | |
if escalation_risk in ["High", "Critical"]: | |
return True | |
if abuse_score >= 70: | |
return True | |
dangerous_patterns = ["stalking language", "veiled threats", "threats"] | |
if any(pattern in detected_patterns for pattern in dangerous_patterns): | |
return True | |
return False | |
def generate_simple_safety_plan(abuse_score, escalation_risk, detected_patterns): | |
"""Generate a basic safety plan""" | |
plan = "π‘οΈ **SAFETY PLANNING RECOMMENDED**\n\n" | |
if escalation_risk == "Critical" or abuse_score >= 85: | |
plan += "π¨ **CRITICAL SAFETY SITUATION**\n\n" | |
plan += "**IMMEDIATE ACTIONS:**\n" | |
plan += "β’ Contact domestic violence hotline: **1-800-799-7233** (24/7, free, confidential)\n" | |
plan += "β’ Text START to **88788** for crisis text support\n" | |
plan += "β’ Consider staying with trusted friends/family tonight\n" | |
plan += "β’ Keep phone charged and accessible\n" | |
plan += "β’ Have emergency bag ready (documents, medications, cash)\n" | |
plan += "\n**IF IN IMMEDIATE DANGER: Call 911**\n\n" | |
elif escalation_risk == "High" or abuse_score >= 70: | |
plan += "β οΈ **HIGH RISK SITUATION**\n\n" | |
plan += "**SAFETY STEPS:**\n" | |
plan += "β’ Contact domestic violence hotline for safety planning: **1-800-799-7233**\n" | |
plan += "β’ Identify 3 trusted people you can contact for help\n" | |
plan += "β’ Plan escape routes and transportation options\n" | |
plan += "β’ Document concerning behaviors with dates and details\n" | |
plan += "β’ Research legal protection options\n\n" | |
# Add pattern-specific advice | |
if "stalking language" in detected_patterns: | |
plan += "π **STALKING BEHAVIORS DETECTED:**\n" | |
plan += "β’ Vary your routines and routes\n" | |
plan += "β’ Check devices for tracking software\n" | |
plan += "β’ Keep record of all stalking incidents\n" | |
plan += "β’ Alert neighbors to watch for suspicious activity\n\n" | |
if "veiled threats" in detected_patterns: | |
plan += "β οΈ **THREATENING LANGUAGE IDENTIFIED:**\n" | |
plan += "β’ Take all threats seriously, even indirect ones\n" | |
plan += "β’ Document all threatening communications\n" | |
plan += "β’ Inform trusted people about threat patterns\n" | |
plan += "β’ Avoid being alone in isolated locations\n\n" | |
# Always include crisis resources | |
plan += "π **CRISIS RESOURCES (24/7):**\n" | |
plan += "β’ **National DV Hotline:** 1-800-799-7233\n" | |
plan += "β’ **Crisis Text Line:** Text START to 88788\n" | |
plan += "β’ **Online Chat:** thehotline.org\n" | |
plan += "β’ **Emergency:** Call 911\n\n" | |
plan += "π **Remember:** You are not alone. This is not your fault. You deserve to be safe." | |
return plan | |
def detect_rare_threats(text): | |
rare_threats = ["necktie party", "permanent solution", "final conversation"] | |
if any(threat in text.lower() for threat in rare_threats): | |
return [("veiled threats", 0.90, 1.6)] | |
return [] | |
def detect_enhanced_threats(text, patterns): | |
"""Enhanced threat detection for v6 patterns""" | |
text_lower = text.lower() | |
enhanced_threats = [] | |
# Stalking language indicators | |
stalking_phrases = [ | |
"stop at nothing", "will find you", "know where you", | |
"watching you", "following you", "can't hide", | |
"i know your", "saw you with", "you belong to me" | |
] | |
# Veiled threat indicators | |
veiled_threat_phrases = [ | |
"some people might", "things happen to people who", | |
"be careful", "hope nothing happens", "accidents happen", | |
"necktie party", "permanent solution", "wouldn't want" | |
] | |
# False concern indicators | |
false_concern_phrases = [ | |
"just worried about", "concerned about your", | |
"someone needs to protect", "for your own good" | |
] | |
if any(phrase in text_lower for phrase in stalking_phrases): | |
enhanced_threats.append("stalking language") | |
if any(phrase in text_lower for phrase in veiled_threat_phrases): | |
enhanced_threats.append("veiled threats") | |
if any(phrase in text_lower for phrase in false_concern_phrases): | |
enhanced_threats.append("false concern") | |
return enhanced_threats | |
def calculate_enhanced_risk_level(abuse_score, detected_patterns, escalation_risk, darvo_score): | |
"""Enhanced risk calculation that properly weights dangerous patterns""" | |
# Start with base risk from escalation system | |
base_risk = escalation_risk | |
# CRITICAL PATTERNS - Auto-elevate to HIGH risk minimum | |
critical_patterns = ["stalking language", "veiled threats"] | |
has_critical = any(pattern in detected_patterns for pattern in critical_patterns) | |
# DANGEROUS COMBINATIONS - Auto-elevate to CRITICAL | |
dangerous_combos = [ | |
("stalking language", "control"), | |
("veiled threats", "stalking language"), | |
("stalking language", "false concern"), | |
("veiled threats", "control") | |
] | |
has_dangerous_combo = any( | |
all(pattern in detected_patterns for pattern in combo) | |
for combo in dangerous_combos | |
) | |
# FORCE RISK ELEVATION for dangerous patterns | |
if has_dangerous_combo: | |
return "Critical" | |
elif has_critical and abuse_score >= 30: # Lower threshold for critical patterns | |
return "High" | |
elif has_critical: | |
return "Moderate" | |
elif abuse_score >= 70: | |
return "High" | |
elif abuse_score >= 50: | |
return "Moderate" | |
else: | |
return base_risk | |
def get_emotion_profile(text): | |
"""Get emotion profile from text with all scores""" | |
try: | |
emotions = emotion_pipeline(text) | |
if isinstance(emotions, list) and isinstance(emotions[0], list): | |
# Extract all scores from the first prediction | |
emotion_scores = emotions[0] | |
# Convert to dictionary with lowercase emotion names | |
return {e['label'].lower(): round(e['score'], 3) for e in emotion_scores} | |
return {} | |
except Exception as e: | |
logger.error(f"Error in get_emotion_profile: {e}") | |
return { | |
"sadness": 0.0, | |
"joy": 0.0, | |
"neutral": 0.0, | |
"disgust": 0.0, | |
"anger": 0.0, | |
"fear": 0.0 | |
} | |
# FIXED FUNCTION - Added missing "d" and cleaned up structure | |
def get_emotional_tone_tag(text, sentiment, patterns, abuse_score): | |
"""Get emotional tone tag based on emotions and patterns""" | |
emotions = get_emotion_profile(text) | |
sadness = emotions.get("sadness", 0) | |
joy = emotions.get("joy", 0) | |
neutral = emotions.get("neutral", 0) | |
disgust = emotions.get("disgust", 0) | |
anger = emotions.get("anger", 0) | |
fear = emotions.get("fear", 0) | |
text_lower = text.lower() | |
# 1. Direct Threat Detection | |
threat_indicators = [ | |
"if you", "i'll make", "don't forget", "remember", "regret", | |
"i control", "i'll take", "you'll lose", "make sure", | |
"never see", "won't let" | |
] | |
if ( | |
any(indicator in text_lower for indicator in threat_indicators) and | |
any(p in patterns for p in ["control", "insults"]) and | |
(anger > 0.2 or disgust > 0.2 or abuse_score > 70) | |
): | |
return "direct threat" | |
# 2. Obsessive Fixation (for stalking language) | |
obsessive_indicators = [ | |
"stop at nothing", "most desired", "forever", "always will", | |
"belong to me", "you're mine", "never let you go", "can't live without" | |
] | |
if ( | |
any(indicator in text_lower for indicator in obsessive_indicators) and | |
"stalking language" in patterns and | |
(joy > 0.3 or sadness > 0.4 or fear > 0.2) | |
): | |
return "obsessive fixation" | |
# 3. Menacing Calm (for veiled threats) | |
veiled_threat_indicators = [ | |
"some people might", "accidents happen", "be careful", | |
"wouldn't want", "things happen", "unfortunate" | |
] | |
if ( | |
any(indicator in text_lower for indicator in veiled_threat_indicators) and | |
"veiled threats" in patterns and | |
neutral > 0.4 and anger < 0.2 | |
): | |
return "menacing calm" | |
# 4. Predatory Concern (for false concern) | |
concern_indicators = [ | |
"worried about", "concerned about", "for your own good", | |
"someone needs to", "protect you", "take care of you" | |
] | |
if ( | |
any(indicator in text_lower for indicator in concern_indicators) and | |
"false concern" in patterns and | |
(joy > 0.2 or neutral > 0.3) and sentiment == "undermining" | |
): | |
return "predatory concern" | |
# 5. Victim Cosplay (for false equivalence/DARVO) | |
victim_indicators = [ | |
"i'm the victim", "you're abusing me", "i'm being hurt", | |
"you're attacking me", "i'm innocent", "you're the problem" | |
] | |
if ( | |
any(indicator in text_lower for indicator in victim_indicators) and | |
"false equivalence" in patterns and | |
sadness > 0.4 and anger > 0.2 | |
): | |
return "victim cosplay" | |
# 6. Manipulative Hope (for future faking) | |
future_indicators = [ | |
"i'll change", "we'll be", "i promise", "things will be different", | |
"next time", "from now on", "i'll never", "we'll have" | |
] | |
if ( | |
any(indicator in text_lower for indicator in future_indicators) and | |
"future faking" in patterns and | |
(joy > 0.3 or sadness > 0.3) | |
): | |
return "manipulative hope" | |
# 7. Surveillance Intimacy (for stalking with false intimacy) | |
surveillance_indicators = [ | |
"i know you", "i saw you", "i watched", "i've been", | |
"your routine", "where you go", "what you do" | |
] | |
if ( | |
any(indicator in text_lower for indicator in surveillance_indicators) and | |
"stalking language" in patterns and | |
joy > 0.2 and neutral > 0.2 | |
): | |
return "surveillance intimacy" | |
# 8. Conditional Menace (for threats with conditions) | |
conditional_indicators = [ | |
"if you", "unless you", "you better", "don't make me", | |
"you wouldn't want", "force me to" | |
] | |
if ( | |
any(indicator in text_lower for indicator in conditional_indicators) and | |
any(p in patterns for p in ["veiled threats", "control"]) and | |
anger > 0.3 and neutral > 0.2 | |
): | |
return "conditional menace" | |
# 9. False Vulnerability (manipulation disguised as weakness) | |
vulnerability_indicators = [ | |
"i can't help", "i need you", "without you i", "you're all i have", | |
"i'm lost without", "i don't know what to do" | |
] | |
if ( | |
any(indicator in text_lower for indicator in vulnerability_indicators) and | |
any(p in patterns for p in ["guilt tripping", "future faking", "false concern"]) and | |
sadness > 0.5 and sentiment == "undermining" | |
): | |
return "false vulnerability" | |
# 10. Entitled Rage (anger with entitlement) | |
entitlement_indicators = [ | |
"you owe me", "after everything", "how dare you", "you should", | |
"i deserve", "you have no right" | |
] | |
if ( | |
any(indicator in text_lower for indicator in entitlement_indicators) and | |
anger > 0.5 and | |
any(p in patterns for p in ["control", "insults", "blame shifting"]) | |
): | |
return "entitled rage" | |
# 11. Calculated Coldness (deliberate emotional detachment) | |
cold_indicators = [ | |
"i don't care", "whatever", "your choice", "suit yourself", | |
"fine by me", "your loss" | |
] | |
calculated_patterns = ["dismissiveness", "obscure language", "control"] | |
if ( | |
any(indicator in text_lower for indicator in cold_indicators) and | |
any(p in patterns for p in calculated_patterns) and | |
neutral > 0.6 and all(e < 0.2 for e in [anger, sadness, joy]) | |
): | |
return "calculated coldness" | |
# 12. Predictive Punishment | |
future_consequences = [ | |
"will end up", "you'll be", "you will be", "going to be", | |
"will become", "will find yourself", "will realize", | |
"you'll regret", "you'll see", "will learn", "truly will", | |
"end up alone", "end up miserable" | |
] | |
dismissive_endings = [ | |
"i'm out", "i'm done", "whatever", "good luck", | |
"your choice", "your problem", "regardless", | |
"keep", "keep on" | |
] | |
if ( | |
(any(phrase in text_lower for phrase in future_consequences) or | |
any(end in text_lower for end in dismissive_endings)) and | |
any(p in ["dismissiveness", "control"] for p in patterns) and | |
(disgust > 0.2 or neutral > 0.3 or anger > 0.2) | |
): | |
return "predictive punishment" | |
# 13. Performative Regret | |
if ( | |
sadness > 0.3 and | |
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery"]) and | |
(sentiment == "undermining" or abuse_score > 40) | |
): | |
return "performative regret" | |
# 14. Coercive Warmth | |
if ( | |
(joy > 0.2 or sadness > 0.3) and | |
any(p in patterns for p in ["control", "gaslighting"]) and | |
sentiment == "undermining" | |
): | |
return "coercive warmth" | |
# 15. Cold Invalidation | |
if ( | |
(neutral + disgust) > 0.4 and | |
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and | |
sentiment == "undermining" | |
): | |
return "cold invalidation" | |
# 16. Genuine Vulnerability | |
if ( | |
(sadness + fear) > 0.4 and | |
sentiment == "supportive" and | |
all(p in ["recovery"] for p in patterns) | |
): | |
return "genuine vulnerability" | |
# 17. Emotional Threat | |
if ( | |
(anger + disgust) > 0.4 and | |
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and | |
sentiment == "undermining" | |
): | |
return "emotional threat" | |
# 18. Weaponized Sadness | |
if ( | |
sadness > 0.5 and | |
any(p in patterns for p in ["guilt tripping", "projection"]) and | |
sentiment == "undermining" | |
): | |
return "weaponized sadness" | |
# 19. Contradictory Gaslight | |
if ( | |
(joy + anger + sadness) > 0.4 and | |
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and | |
sentiment == "undermining" | |
): | |
return "contradictory gaslight" | |
# 20. Forced Accountability Flip | |
if ( | |
(anger + disgust) > 0.4 and | |
any(p in patterns for p in ["blame shifting", "projection"]) and | |
sentiment == "undermining" | |
): | |
return "forced accountability flip" | |
# Emotional Instability Fallback | |
if ( | |
(anger + sadness + disgust) > 0.5 and | |
sentiment == "undermining" | |
): | |
return "emotional instability" | |
return "neutral" | |
def predict_darvo_score(text): | |
"""Predict DARVO score for given text""" | |
try: | |
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
logits = darvo_model(**inputs).logits | |
return round(sigmoid(logits.cpu()).item(), 4) | |
except Exception as e: | |
logger.error(f"Error in DARVO prediction: {e}") | |
return 0.0 | |
def detect_weapon_language(text): | |
"""Detect weapon-related language in text""" | |
weapon_keywords = ["knife", "gun", "bomb", "weapon", "kill", "stab"] | |
t = text.lower() | |
return any(w in t for w in weapon_keywords) | |
def get_risk_stage(patterns, sentiment): | |
"""Determine risk stage based on patterns and sentiment""" | |
try: | |
if "insults" in patterns: | |
return 2 | |
elif "recovery" in patterns: | |
return 3 | |
elif "control" in patterns or "guilt tripping" in patterns: | |
return 1 | |
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]): | |
return 4 | |
return 1 | |
except Exception as e: | |
logger.error(f"Error determining risk stage: {e}") | |
return 1 | |
def detect_threat_pattern(text, patterns): | |
"""Detect if a message contains threat patterns""" | |
# Threat indicators in text | |
threat_words = [ | |
"regret", "sorry", "pay", "hurt", "suffer", "destroy", "ruin", | |
"expose", "tell everyone", "never see", "take away", "lose", | |
"control", "make sure", "won't let", "force", "warn", "never", | |
"punish", "teach you", "learn", "show you", "remember", | |
"if you", "don't forget", "i control", "i'll make sure", # Added these specific phrases | |
"bank account", "phone", "money", "access" # Added financial control indicators | |
] | |
# Check for conditional threats (if/then structures) | |
text_lower = text.lower() | |
conditional_threat = ( | |
"if" in text_lower and | |
any(word in text_lower for word in ["regret", "make sure", "control"]) | |
) | |
has_threat_words = any(word in text_lower for word in threat_words) | |
# Check for threat patterns | |
threat_patterns = {"control", "gaslighting", "blame shifting", "insults"} | |
has_threat_patterns = any(p in threat_patterns for p in patterns) | |
return has_threat_words or has_threat_patterns or conditional_threat | |
def detect_compound_threat(text, patterns): | |
"""Detect compound threats in a single message""" | |
try: | |
# Rule A: Single Message Multiple Patterns | |
high_risk_patterns = {"control", "gaslighting", "blame shifting", "insults"} | |
high_risk_count = sum(1 for p in patterns if p in high_risk_patterns) | |
has_threat = detect_threat_pattern(text, patterns) | |
# Special case for control + threats | |
has_control = "control" in patterns | |
has_conditional_threat = "if" in text.lower() and any(word in text.lower() | |
for word in ["regret", "make sure", "control"]) | |
# Single message compound threat | |
if (has_threat and high_risk_count >= 2) or (has_control and has_conditional_threat): | |
return True, "single_message" | |
return False, None | |
except Exception as e: | |
logger.error(f"Error in compound threat detection: {e}") | |
return False, None | |
def analyze_message_batch_threats(messages, results): | |
"""Analyze multiple messages for compound threats""" | |
threat_messages = [] | |
support_messages = [] | |
for i, (msg, (result, _)) in enumerate(zip(messages, results)): | |
if not msg.strip(): # Skip empty messages | |
continue | |
patterns = result[1] # Get detected patterns | |
# Check for threat in this message | |
if detect_threat_pattern(msg, patterns): | |
threat_messages.append(i) | |
# Check for supporting patterns | |
if any(p in {"control", "gaslighting", "blame shifting"} for p in patterns): | |
support_messages.append(i) | |
# Rule B: Multi-Message Accumulation | |
if len(threat_messages) >= 2: | |
return True, "multiple_threats" | |
elif len(threat_messages) == 1 and len(support_messages) >= 2: | |
return True, "threat_with_support" | |
return False, None | |
def compute_abuse_score(matched_scores, sentiment): | |
"""Compute abuse score from matched patterns and sentiment""" | |
try: | |
if not matched_scores: | |
logger.debug("No matched scores, returning 0") | |
return 0.0 | |
# Calculate weighted score | |
total_weight = sum(weight for _, _, weight in matched_scores) | |
if total_weight == 0: | |
logger.debug("Total weight is 0, returning 0") | |
return 0.0 | |
# Get highest pattern scores | |
pattern_scores = [(label, score) for label, score, _ in matched_scores] | |
sorted_scores = sorted(pattern_scores, key=lambda x: x[1], reverse=True) | |
logger.debug(f"Sorted pattern scores: {sorted_scores}") | |
# Base score calculation | |
weighted_sum = sum(score * weight for _, score, weight in matched_scores) | |
base_score = (weighted_sum / total_weight) * 100 | |
logger.debug(f"Initial base score: {base_score:.1f}") | |
# Cap maximum score based on pattern severity | |
max_score = 85.0 # Set maximum possible score | |
if any(label in {'control', 'gaslighting'} for label, _, _ in matched_scores): | |
max_score = 90.0 | |
logger.debug(f"Increased max score to {max_score} due to high severity patterns") | |
# Apply diminishing returns for multiple patterns | |
if len(matched_scores) > 1: | |
multiplier = 1 + (0.1 * (len(matched_scores) - 1)) | |
base_score *= multiplier | |
logger.debug(f"Applied multiplier {multiplier:.2f} for {len(matched_scores)} patterns") | |
# Apply sentiment modifier | |
if sentiment == "supportive": | |
base_score *= 0.85 | |
logger.debug("Applied 15% reduction for supportive sentiment") | |
final_score = min(round(base_score, 1), max_score) | |
logger.debug(f"Final abuse score: {final_score}") | |
return final_score | |
except Exception as e: | |
logger.error(f"Error computing abuse score: {e}") | |
return 0.0 | |
def detect_explicit_abuse(text): | |
"""Improved explicit abuse detection with word boundary checking""" | |
import re | |
explicit_abuse_words = ['fuck', 'bitch', 'shit', 'dick'] # Removed 'ass' | |
# Add more specific patterns for actual abusive uses of 'ass' | |
abusive_ass_patterns = [ | |
r'\bass\b(?!\s*glass)', # 'ass' not followed by 'glass' | |
r'\bdumb\s*ass\b', | |
r'\bkiss\s*my\s*ass\b', | |
r'\bget\s*your\s*ass\b' | |
] | |
text_lower = text.lower() | |
# Check basic explicit words | |
for word in explicit_abuse_words: | |
if re.search(r'\b' + word + r'\b', text_lower): | |
return True | |
# Check specific abusive 'ass' patterns | |
for pattern in abusive_ass_patterns: | |
if re.search(pattern, text_lower): | |
return True | |
return False | |
def analyze_single_message(text, thresholds): | |
"""Analyze a single message for abuse patterns""" | |
logger.debug("\n=== DEBUG START ===") | |
logger.debug(f"Input text: {text}") | |
try: | |
if not text.strip(): | |
logger.debug("Empty text, returning zeros") | |
return 0.0, [], [], {"label": "none"}, 1, 0.0, None | |
# EARLY SUPPORTIVE MESSAGE CHECK | |
innocent_indicators = [ | |
'broken', 'not working', 'cracked', 'glass', 'screen', 'phone', | |
'device', 'battery', 'charger', 'wifi', 'internet', 'computer', | |
'sorry', 'apologize', 'my fault', 'mistake' | |
] | |
# If message contains innocent indicators and is short/simple | |
if (any(indicator in text.lower() for indicator in innocent_indicators) and | |
len(text.split()) < 20 and | |
not any(threat in text.lower() for threat in ['kill', 'hurt', 'destroy', 'hate'])): | |
# Run quick sentiment check | |
sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()} | |
with torch.no_grad(): | |
sent_logits = sentiment_model(**sent_inputs).logits[0] | |
sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy() | |
# If sentiment is strongly supportive, return early | |
if sent_probs[0] > 0.8: # 80% supportive | |
logger.debug("Early return: Message appears to be innocent/supportive") | |
return 0.0, [], [], {"label": "supportive"}, 1, 0.0, "neutral" | |
# Check for explicit abuse (moved AFTER early return check) | |
explicit_abuse = detect_explicit_abuse(text) | |
logger.debug(f"Explicit abuse detected: {explicit_abuse}") | |
# Abuse model inference | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
raw_scores = torch.sigmoid(outputs.logits.squeeze(0)).cpu().numpy() | |
# Log raw model outputs | |
logger.debug("\nRaw model scores:") | |
for label, score in zip(LABELS, raw_scores): | |
logger.debug(f"{label}: {score:.3f}") | |
# Get predictions and sort them | |
predictions = list(zip(LABELS, raw_scores)) | |
sorted_predictions = sorted(predictions, key=lambda x: x[1], reverse=True) | |
logger.debug("\nTop 3 predictions:") | |
for label, score in sorted_predictions[:3]: | |
logger.debug(f"{label}: {score:.3f}") | |
# Apply thresholds | |
threshold_labels = [] | |
if explicit_abuse: | |
threshold_labels.append("insults") | |
logger.debug("\nForced inclusion of 'insults' due to explicit abuse") | |
for label, score in sorted_predictions: | |
base_threshold = thresholds.get(label, 0.25) | |
if explicit_abuse: | |
base_threshold *= 0.5 | |
if score > base_threshold: | |
if label not in threshold_labels: | |
threshold_labels.append(label) | |
logger.debug(f"\nLabels that passed thresholds: {threshold_labels}") | |
# Calculate matched scores | |
matched_scores = [] | |
for label in threshold_labels: | |
score = raw_scores[LABELS.index(label)] | |
weight = PATTERN_WEIGHTS.get(label, 1.0) | |
if explicit_abuse and label == "insults": | |
weight *= 1.5 | |
matched_scores.append((label, score, weight)) | |
# Get sentiment | |
sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()} | |
with torch.no_grad(): | |
sent_logits = sentiment_model(**sent_inputs).logits[0] | |
sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy() | |
# Add detailed logging | |
logger.debug("\nπ SENTIMENT ANALYSIS DETAILS") | |
logger.debug(f"Raw logits: {sent_logits}") | |
logger.debug(f"Probabilities: supportive={sent_probs[0]:.3f}, undermining={sent_probs[1]:.3f}") | |
# Make sure we're using the correct index mapping | |
sentiment = SENTIMENT_LABELS[int(np.argmax(sent_probs))] | |
logger.debug(f"Selected sentiment: {sentiment}") | |
enhanced_patterns = detect_enhanced_threats(text, threshold_labels) | |
for pattern in enhanced_patterns: | |
if pattern not in threshold_labels: | |
threshold_labels.append(pattern) | |
# Add to matched_scores with high confidence | |
weight = PATTERN_WEIGHTS.get(pattern, 1.0) | |
matched_scores.append((pattern, 0.85, weight)) | |
# Calculate abuse score | |
abuse_score = compute_abuse_score(matched_scores, sentiment) | |
if explicit_abuse: | |
abuse_score = max(abuse_score, 70.0) | |
# Apply sentiment-based score capping BEFORE compound threat check | |
if sentiment == "supportive" and not explicit_abuse: | |
# For supportive messages, cap the abuse score much lower | |
abuse_score = min(abuse_score, 30.0) | |
logger.debug(f"Capped abuse score to {abuse_score} due to supportive sentiment") | |
# Check for compound threats | |
compound_threat_flag, threat_type = detect_compound_threat(text, threshold_labels) | |
# Apply compound threat override only for non-supportive messages | |
if compound_threat_flag and sentiment != "supportive": | |
logger.debug(f"β οΈ Compound threat detected in message: {threat_type}") | |
abuse_score = max(abuse_score, 85.0) | |
# Get DARVO score | |
darvo_score = predict_darvo_score(text) | |
# Get tone using emotion-based approach | |
tone_tag = get_emotional_tone_tag(text, sentiment, threshold_labels, abuse_score) | |
# Log tone usage | |
log_emotional_tone_usage(tone_tag, threshold_labels) | |
# Check for the specific combination (final safety check) | |
highest_pattern = max(matched_scores, key=lambda x: x[1])[0] if matched_scores else None | |
if sentiment == "supportive" and tone_tag == "neutral" and highest_pattern == "obscure language": | |
logger.debug("Message classified as likely non-abusive (supportive, neutral, and obscure language). Returning low risk.") | |
return 0.0, [], [], {"label": "supportive"}, 1, 0.0, "neutral" | |
# Set stage | |
stage = 2 if explicit_abuse or abuse_score > 70 else 1 | |
logger.debug("=== DEBUG END ===\n") | |
return abuse_score, threshold_labels, matched_scores, {"label": sentiment}, stage, darvo_score, tone_tag | |
except Exception as e: | |
logger.error(f"Error in analyze_single_message: {e}") | |
return 0.0, [], [], {"label": "error"}, 1, 0.0, None | |
def generate_abuse_score_chart(dates, scores, patterns): | |
"""Generate a timeline chart of abuse scores""" | |
try: | |
plt.figure(figsize=(10, 6)) | |
plt.clf() | |
# Create new figure | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
# Plot points and lines | |
x = range(len(scores)) | |
plt.plot(x, scores, 'bo-', linewidth=2, markersize=8) | |
# Add labels for each point with highest scoring pattern | |
for i, (score, pattern) in enumerate(zip(scores, patterns)): | |
# Get the pattern and its score | |
plt.annotate( | |
f'{pattern}\n{score:.0f}%', | |
(i, score), | |
textcoords="offset points", | |
xytext=(0, 10), | |
ha='center', | |
bbox=dict( | |
boxstyle='round,pad=0.5', | |
fc='white', | |
ec='gray', | |
alpha=0.8 | |
) | |
) | |
# Customize the plot | |
plt.ylim(-5, 105) | |
plt.grid(True, linestyle='--', alpha=0.7) | |
plt.title('Abuse Pattern Timeline', pad=20, fontsize=12) | |
plt.ylabel('Abuse Score %') | |
# X-axis labels | |
plt.xticks(x, dates, rotation=45) | |
# Risk level bands with better colors | |
plt.axhspan(0, 50, color='#90EE90', alpha=0.2) # light green - Low Risk | |
plt.axhspan(50, 70, color='#FFD700', alpha=0.2) # gold - Moderate Risk | |
plt.axhspan(70, 85, color='#FFA500', alpha=0.2) # orange - High Risk | |
plt.axhspan(85, 100, color='#FF6B6B', alpha=0.2) # light red - Critical Risk | |
# Add risk level labels | |
plt.text(-0.2, 25, 'Low Risk', rotation=90, va='center') | |
plt.text(-0.2, 60, 'Moderate Risk', rotation=90, va='center') | |
plt.text(-0.2, 77.5, 'High Risk', rotation=90, va='center') | |
plt.text(-0.2, 92.5, 'Critical Risk', rotation=90, va='center') | |
# Adjust layout | |
plt.tight_layout() | |
# Convert plot to image | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight') | |
buf.seek(0) | |
plt.close('all') # Close all figures to prevent memory leaks | |
return Image.open(buf) | |
except Exception as e: | |
logger.error(f"Error generating abuse score chart: {e}") | |
return None | |
def analyze_composite(msg1, msg2, msg3, *answers_and_none): | |
"""Analyze multiple messages and checklist responses""" | |
logger.debug("\nπ STARTING NEW ANALYSIS") | |
logger.debug("=" * 50) | |
# Define severity categories at the start | |
high = {'control'} | |
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', | |
'contradictory statements', 'guilt tripping'} | |
low = {'blame shifting', 'projection', 'recovery'} | |
try: | |
# Process checklist responses | |
logger.debug("\nπ CHECKLIST PROCESSING") | |
logger.debug("=" * 50) | |
none_selected_checked = answers_and_none[-1] | |
responses_checked = any(answers_and_none[:-1]) | |
none_selected = not responses_checked and none_selected_checked | |
logger.debug("Checklist Status:") | |
logger.debug(f" β’ None Selected Box: {'β' if none_selected_checked else 'β'}") | |
logger.debug(f" β’ Has Responses: {'β' if responses_checked else 'β'}") | |
logger.debug(f" β’ Final Status: {'None Selected' if none_selected else 'Has Selections'}") | |
if none_selected: | |
escalation_score = 0 | |
escalation_note = "Checklist completed: no danger items reported." | |
escalation_completed = True | |
logger.debug("\nβ Checklist: No items selected") | |
elif responses_checked: | |
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a) | |
escalation_note = "Checklist completed." | |
escalation_completed = True | |
logger.debug(f"\nπ Checklist Score: {escalation_score}") | |
# Log checked items | |
logger.debug("\nβ οΈ Selected Risk Factors:") | |
for (q, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]): | |
if a: | |
logger.debug(f" β’ [{w} points] {q}") | |
else: | |
escalation_score = None | |
escalation_note = "Checklist not completed." | |
escalation_completed = False | |
logger.debug("\nβ Checklist: Not completed") | |
# Process messages | |
logger.debug("\nπ MESSAGE PROCESSING") | |
logger.debug("=" * 50) | |
messages = [msg1, msg2, msg3] | |
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()] | |
logger.debug(f"Active Messages: {len(active)} of 3") | |
if not active: | |
logger.debug("β Error: No messages provided") | |
return "Please enter at least one message.", None | |
# Detect threats | |
logger.debug("\nπ¨ THREAT DETECTION") | |
logger.debug("=" * 50) | |
def normalize(text): | |
import unicodedata | |
text = text.lower().strip() | |
text = unicodedata.normalize("NFKD", text) | |
text = text.replace("'", "'") | |
return re.sub(r"[^a-z0-9 ]", "", text) | |
def detect_threat_motifs(message, motif_list): | |
norm_msg = normalize(message) | |
return [motif for motif in motif_list if normalize(motif) in norm_msg] | |
# Analyze threats and patterns | |
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active] | |
flat_threats = [t for sublist in immediate_threats for t in sublist] | |
threat_risk = "Yes" if flat_threats else "No" | |
# Analyze each message | |
logger.debug("\nπ INDIVIDUAL MESSAGE ANALYSIS") | |
logger.debug("=" * 50) | |
results = [] | |
for m, d in active: | |
logger.debug(f"\nπ ANALYZING {d}") | |
logger.debug("-" * 40) # Separator for each message | |
result = analyze_single_message(m, THRESHOLDS.copy()) | |
# Check for non-abusive classification and skip further analysis | |
if result[0] == 0.0 and result[1] == [] and result[3] == {"label": "supportive"} and result[4] == 1 and result[5] == 0.0 and result[6] == "neutral": | |
logger.debug(f"β {d} classified as non-abusive, skipping further analysis.") | |
continue # Skip to the next message | |
results.append((result, d)) | |
# Unpack results for cleaner logging | |
abuse_score, patterns, matched_scores, sentiment, stage, darvo_score, tone = result | |
# Log core metrics | |
logger.debug("\nπ CORE METRICS") | |
logger.debug(f" β’ Abuse Score: {abuse_score:.1f}%") | |
logger.debug(f" β’ DARVO Score: {darvo_score:.3f}") | |
logger.debug(f" β’ Risk Stage: {stage}") | |
logger.debug(f" β’ Sentiment: {sentiment['label']}") | |
logger.debug(f" β’ Tone: {tone}") | |
# Log detected patterns with scores | |
if patterns: | |
logger.debug("\nπ― DETECTED PATTERNS") | |
for label, score, weight in matched_scores: | |
severity = "βHIGH" if label in high else "β οΈ MODERATE" if label in moderate else "π LOW" | |
logger.debug(f" β’ {severity} | {label}: {score:.3f} (weight: {weight})") | |
else: | |
logger.debug("\nβ No abuse patterns detected") | |
# Extract scores and metadata | |
abuse_scores = [r[0][0] for r in results] | |
stages = [r[0][4] for r in results] | |
darvo_scores = [r[0][5] for r in results] | |
tone_tags = [r[0][6] for r in results] | |
dates_used = [r[1] for r in results] | |
# Pattern Analysis Summary | |
logger.debug("\nπ PATTERN ANALYSIS SUMMARY") | |
logger.debug("=" * 50) | |
predicted_labels = [label for r in results for label in r[0][1]] | |
if predicted_labels: | |
logger.debug("Detected Patterns Across All Messages:") | |
pattern_counts = Counter(predicted_labels) | |
# Log high severity patterns first | |
high_patterns = [p for p in pattern_counts if p in high] | |
if high_patterns: | |
logger.debug("\nβ HIGH SEVERITY PATTERNS:") | |
for p in high_patterns: | |
logger.debug(f" β’ {p} (Γ{pattern_counts[p]})") | |
# Then moderate | |
moderate_patterns = [p for p in pattern_counts if p in moderate] | |
if moderate_patterns: | |
logger.debug("\nβ οΈ MODERATE SEVERITY PATTERNS:") | |
for p in moderate_patterns: | |
logger.debug(f" β’ {p} (Γ{pattern_counts[p]})") | |
# Then low | |
low_patterns = [p for p in pattern_counts if p in low] | |
if low_patterns: | |
logger.debug("\nπ LOW SEVERITY PATTERNS:") | |
for p in low_patterns: | |
logger.debug(f" β’ {p} (Γ{pattern_counts[p]})") | |
else: | |
logger.debug("β No patterns detected across messages") | |
# Pattern Severity Analysis | |
logger.debug("\nβοΈ SEVERITY ANALYSIS") | |
logger.debug("=" * 50) | |
counts = {'high': 0, 'moderate': 0, 'low': 0} | |
for label in predicted_labels: | |
if label in high: | |
counts['high'] += 1 | |
elif label in moderate: | |
counts['moderate'] += 1 | |
elif label in low: | |
counts['low'] += 1 | |
logger.debug("Pattern Distribution:") | |
if counts['high'] > 0: | |
logger.debug(f" β High Severity: {counts['high']}") | |
if counts['moderate'] > 0: | |
logger.debug(f" β οΈ Moderate Severity: {counts['moderate']}") | |
if counts['low'] > 0: | |
logger.debug(f" π Low Severity: {counts['low']}") | |
total_patterns = sum(counts.values()) | |
if total_patterns > 0: | |
logger.debug(f"\nSeverity Percentages:") | |
logger.debug(f" β’ High: {(counts['high']/total_patterns)*100:.1f}%") | |
logger.debug(f" β’ Moderate: {(counts['moderate']/total_patterns)*100:.1f}%") | |
logger.debug(f" β’ Low: {(counts['low']/total_patterns)*100:.1f}%") | |
# Risk Assessment | |
logger.debug("\nπ― RISK ASSESSMENT") | |
logger.debug("=" * 50) | |
if counts['high'] >= 2 and counts['moderate'] >= 2: | |
pattern_escalation_risk = "Critical" | |
logger.debug("ββ CRITICAL RISK") | |
logger.debug(" β’ Multiple high and moderate patterns detected") | |
logger.debug(f" β’ High patterns: {counts['high']}") | |
logger.debug(f" β’ Moderate patterns: {counts['moderate']}") | |
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or \ | |
(counts['moderate'] >= 3) or \ | |
(counts['high'] >= 1 and counts['moderate'] >= 2): | |
pattern_escalation_risk = "High" | |
logger.debug("β HIGH RISK") | |
logger.debug(" β’ Significant pattern combination detected") | |
logger.debug(f" β’ High patterns: {counts['high']}") | |
logger.debug(f" β’ Moderate patterns: {counts['moderate']}") | |
elif (counts['moderate'] == 2) or \ | |
(counts['high'] == 1 and counts['moderate'] == 1) or \ | |
(counts['moderate'] == 1 and counts['low'] >= 2) or \ | |
(counts['high'] == 1 and sum(counts.values()) == 1): | |
pattern_escalation_risk = "Moderate" | |
logger.debug("β οΈ MODERATE RISK") | |
logger.debug(" β’ Concerning pattern combination detected") | |
logger.debug(f" β’ Pattern distribution: H:{counts['high']}, M:{counts['moderate']}, L:{counts['low']}") | |
else: | |
pattern_escalation_risk = "Low" | |
logger.debug("π LOW RISK") | |
logger.debug(" β’ Limited pattern severity detected") | |
logger.debug(f" β’ Pattern distribution: H:{counts['high']}, M:{counts['moderate']}, L:{counts['low']}") | |
# Checklist Risk Assessment | |
logger.debug("\nπ CHECKLIST RISK ASSESSMENT") | |
logger.debug("=" * 50) | |
checklist_escalation_risk = "Unknown" if escalation_score is None else ( | |
"Critical" if escalation_score >= 20 else | |
"Moderate" if escalation_score >= 10 else | |
"Low" | |
) | |
if escalation_score is not None: | |
logger.debug(f"Score: {escalation_score}/29") | |
logger.debug(f"Risk Level: {checklist_escalation_risk}") | |
if escalation_score >= 20: | |
logger.debug("ββ CRITICAL: Score indicates severe risk") | |
elif escalation_score >= 10: | |
logger.debug("β οΈ MODERATE: Score indicates concerning risk") | |
else: | |
logger.debug("π LOW: Score indicates limited risk") | |
else: | |
logger.debug("β Risk Level: Unknown (checklist not completed)") | |
# Escalation Analysis | |
logger.debug("\nπ ESCALATION ANALYSIS") | |
logger.debug("=" * 50) | |
escalation_bump = 0 | |
for result, msg_id in results: | |
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result | |
logger.debug(f"\nπ Message {msg_id} Risk Factors:") | |
factors = [] | |
if darvo_score > 0.65: | |
escalation_bump += 3 | |
factors.append(f"β² +3: High DARVO score ({darvo_score:.3f})") | |
if tone_tag in ["forced accountability flip", "emotional threat"]: | |
escalation_bump += 2 | |
factors.append(f"β² +2: Concerning tone ({tone_tag})") | |
if abuse_score > 80: | |
escalation_bump += 2 | |
factors.append(f"β² +2: High abuse score ({abuse_score:.1f}%)") | |
if stage == 2: | |
escalation_bump += 3 | |
factors.append("β² +3: Escalation stage") | |
if factors: | |
for factor in factors: | |
logger.debug(f" {factor}") | |
else: | |
logger.debug(" β No escalation factors") | |
logger.debug(f"\nπ Total Escalation Bump: +{escalation_bump}") | |
# Check for compound threats across messages | |
compound_threat_flag, threat_type = analyze_message_batch_threats( | |
[msg1, msg2, msg3], results | |
) | |
if compound_threat_flag: | |
logger.debug(f"β οΈ Compound threat detected across messages: {threat_type}") | |
pattern_escalation_risk = "Critical" # Override risk level | |
logger.debug("Risk level elevated to CRITICAL due to compound threats") | |
# Combined Risk Calculation | |
logger.debug("\nπ― FINAL RISK CALCULATION") | |
logger.debug("=" * 50) | |
def rank(label): | |
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0) | |
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump | |
logger.debug("Risk Components:") | |
logger.debug(f" β’ Pattern Risk ({pattern_escalation_risk}): +{rank(pattern_escalation_risk)}") | |
logger.debug(f" β’ Checklist Risk ({checklist_escalation_risk}): +{rank(checklist_escalation_risk)}") | |
logger.debug(f" β’ Escalation Bump: +{escalation_bump}") | |
logger.debug(f" = Combined Score: {combined_score}") | |
escalation_risk = ( | |
"Critical" if combined_score >= 6 else | |
"High" if combined_score >= 4 else | |
"Moderate" if combined_score >= 2 else | |
"Low" | |
) | |
logger.debug(f"\nβ οΈ Final Escalation Risk: {escalation_risk}") | |
# Generate Output Text | |
logger.debug("\nπ GENERATING OUTPUT") | |
logger.debug("=" * 50) | |
if escalation_score is None: | |
escalation_text = ( | |
"π« **Escalation Potential: Unknown** (Checklist not completed)\n" | |
"β οΈ This section was not completed. Escalation potential is estimated using message data only.\n" | |
) | |
hybrid_score = 0 | |
logger.debug("Generated output for incomplete checklist") | |
elif escalation_score == 0: | |
escalation_text = ( | |
"β **Escalation Checklist Completed:** No danger items reported.\n" | |
"π§ **Escalation potential estimated from detected message patterns only.**\n" | |
f"β’ Pattern Risk: {pattern_escalation_risk}\n" | |
f"β’ Checklist Risk: None reported\n" | |
f"β’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)" | |
) | |
hybrid_score = escalation_bump | |
logger.debug("Generated output for no-risk checklist") | |
else: | |
hybrid_score = escalation_score + escalation_bump | |
escalation_text = ( | |
f"π **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n" | |
"π This score combines your safety checklist answers *and* detected high-risk behavior.\n" | |
f"β’ Pattern Risk: {pattern_escalation_risk}\n" | |
f"β’ Checklist Risk: {checklist_escalation_risk}\n" | |
f"β’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)" | |
) | |
logger.debug(f"Generated output with hybrid score: {hybrid_score}/29") | |
# Final Metrics | |
logger.debug("\nπ FINAL METRICS") | |
logger.debug("=" * 50) | |
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores))) | |
logger.debug(f"Composite Abuse Score: {composite_abuse}%") | |
most_common_stage = max(set(stages), key=stages.count) | |
logger.debug(f"Most Common Stage: {most_common_stage}") | |
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3) | |
logger.debug(f"Average DARVO Score: {avg_darvo}") | |
final_risk_level = calculate_enhanced_risk_level( | |
composite_abuse, | |
predicted_labels, | |
escalation_risk, | |
avg_darvo | |
) | |
# Override escalation_risk with the enhanced version | |
escalation_risk = final_risk_level | |
# Generate Final Report | |
logger.debug("\nπ GENERATING FINAL REPORT") | |
logger.debug("=" * 50) | |
out = f"Abuse Intensity: {composite_abuse}%\n" | |
# Add detected patterns to output | |
if predicted_labels: | |
out += "π Detected Patterns:\n" | |
if high_patterns: | |
patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in high_patterns) | |
out += f"β High Severity: {patterns_str}\n" | |
if moderate_patterns: | |
patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in moderate_patterns) | |
out += f"β οΈ Moderate Severity: {patterns_str}\n" | |
if low_patterns: | |
patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in low_patterns) | |
out += f"π Low Severity: {patterns_str}\n" | |
out += "\n" | |
out += "π This reflects the strength and severity of detected abuse patterns in the message(s).\n\n" | |
# Risk Level Assessment | |
risk_level = final_risk_level | |
logger.debug(f"Final Risk Level: {risk_level}") | |
# Add Risk Description | |
risk_descriptions = { | |
"Critical": ( | |
"π¨ **Risk Level: Critical**\n" | |
"Multiple severe abuse patterns detected. This situation shows signs of " | |
"dangerous escalation and immediate intervention may be needed." | |
), | |
"High": ( | |
"β οΈ **Risk Level: High**\n" | |
"Strong abuse patterns detected. This situation shows concerning " | |
"signs of manipulation and control." | |
), | |
"Moderate": ( | |
"β‘ **Risk Level: Moderate**\n" | |
"Concerning patterns detected. While not severe, these behaviors " | |
"indicate unhealthy relationship dynamics." | |
), | |
"Low": ( | |
"π **Risk Level: Low**\n" | |
"Minor concerning patterns detected. While present, the detected " | |
"behaviors are subtle or infrequent." | |
) | |
} | |
out += risk_descriptions[risk_level] | |
out += f"\n\n{RISK_STAGE_LABELS[most_common_stage]}" | |
logger.debug("Added risk description and stage information") | |
# Add DARVO Analysis | |
if avg_darvo > 0.25: | |
level = "moderate" if avg_darvo < 0.65 else "high" | |
out += f"\n\nπ **DARVO Score: {avg_darvo}** β This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame." | |
logger.debug(f"Added DARVO analysis ({level} level)") | |
# Add Emotional Tones | |
logger.debug("\nπ Adding Emotional Tones") | |
out += "\n\nπ **Emotional Tones Detected:**\n" | |
for i, tone in enumerate(tone_tags): | |
out += f"β’ Message {i+1}: *{tone or 'none'}*\n" | |
logger.debug(f"Message {i+1} tone: {tone}") | |
# Add Threats Section | |
logger.debug("\nβ οΈ Adding Threat Analysis") | |
if flat_threats: | |
out += "\n\nπ¨ **Immediate Danger Threats Detected:**\n" | |
for t in set(flat_threats): | |
out += f"β’ \"{t}\"\n" | |
out += "\nβ οΈ These phrases may indicate an imminent risk to physical safety." | |
logger.debug(f"Added {len(set(flat_threats))} unique threat warnings") | |
else: | |
out += "\n\nπ§© **Immediate Danger Threats:** None explicitly detected.\n" | |
out += "This does *not* rule out risk, but no direct threat phrases were matched." | |
logger.debug("No threats to add") | |
# Generate Timeline | |
logger.debug("\nπ Generating Timeline") | |
pattern_labels = [] | |
for result, _ in results: | |
matched_scores = result[2] # Get the matched_scores from the result tuple | |
if matched_scores: | |
# Sort matched_scores by score and get the highest scoring pattern | |
highest_pattern = max(matched_scores, key=lambda x: x[1]) | |
pattern_labels.append(highest_pattern[0]) # Add the pattern name | |
else: | |
pattern_labels.append("none") | |
logger.debug("Pattern labels for timeline:") | |
for i, (pattern, score) in enumerate(zip(pattern_labels, abuse_scores)): | |
logger.debug(f"Message {i+1}: {pattern} ({score:.1f}%)") | |
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels) | |
logger.debug("Timeline generated successfully") | |
# Add Escalation Text | |
out += "\n\n" + escalation_text | |
logger.debug("Added escalation text to output") | |
logger.debug("\nβ ANALYSIS COMPLETE") | |
logger.debug("=" * 50) | |
# SAFETY PLANNING CHECK | |
# Check if safety planning should be offered | |
show_safety = should_show_safety_planning( | |
composite_abuse, | |
escalation_risk, | |
predicted_labels | |
) | |
safety_plan = "" | |
if show_safety: | |
# Generate safety plan | |
safety_plan = generate_simple_safety_plan( | |
composite_abuse, | |
escalation_risk, | |
predicted_labels | |
) | |
# Add notice to main results | |
out += "\n\n" + "π‘οΈ " + "="*48 | |
out += "\n**SAFETY PLANNING AVAILABLE**" | |
out += "\n" + "="*50 | |
out += "\n\nBased on your analysis results, we've generated a safety plan." | |
out += "\nCheck the 'Safety Plan' output below for personalized guidance." | |
return out, timeline_image, safety_plan | |
except Exception as e: | |
logger.error("\nβ ERROR IN ANALYSIS") | |
logger.error("=" * 50) | |
logger.error(f"Error type: {type(e).__name__}") | |
logger.error(f"Error message: {str(e)}") | |
logger.error(f"Traceback:\n{traceback.format_exc()}") | |
return "An error occurred during analysis.", None, "" | |
def format_results_for_new_ui(analysis_output, timeline_image, safety_plan): | |
""" | |
Convert your existing analysis output into the format needed for the new UI | |
""" | |
try: | |
# Parse your existing text output to extract structured data | |
lines = analysis_output.split('\n') | |
# Extract abuse intensity | |
abuse_intensity = 0 | |
for line in lines: | |
if line.startswith('Abuse Intensity:'): | |
abuse_intensity = int(re.findall(r'\d+', line)[0]) | |
break | |
# Extract DARVO score | |
darvo_score = 0.0 | |
for line in lines: | |
if 'DARVO Score:' in line: | |
# Extract number from line like "π **DARVO Score: 0.456**" | |
darvo_match = re.search(r'DARVO Score: ([\d.]+)', line) | |
if darvo_match: | |
darvo_score = float(darvo_match.group(1)) | |
break | |
# Extract emotional tones | |
emotional_tones = [] | |
in_tones_section = False | |
for line in lines: | |
if 'π **Emotional Tones Detected:**' in line: | |
in_tones_section = True | |
continue | |
elif in_tones_section and line.strip(): | |
if line.startswith('β’ Message'): | |
# Extract tone from line like "β’ Message 1: *menacing calm*" | |
tone_match = re.search(r'\*([^*]+)\*', line) | |
if tone_match: | |
tone = tone_match.group(1) | |
emotional_tones.append(tone if tone != 'none' else 'neutral') | |
else: | |
emotional_tones.append('neutral') | |
elif not line.startswith('β’') and line.strip(): | |
break | |
# Determine risk level based on your existing logic | |
if abuse_intensity >= 85: | |
risk_level = 'critical' | |
elif abuse_intensity >= 70: | |
risk_level = 'high' | |
elif abuse_intensity >= 50: | |
risk_level = 'moderate' | |
else: | |
risk_level = 'low' | |
# FIXED: Extract detected patterns properly | |
patterns = [] | |
in_patterns_section = False | |
# Define valid pattern names to filter against | |
valid_patterns = { | |
"recovery phase", "control", "gaslighting", "guilt tripping", "dismissiveness", | |
"blame shifting", "nonabusive", "projection", "insults", | |
"contradictory statements", "obscure language", | |
"veiled threats", "stalking language", "false concern", | |
"false equivalence", "future faking" | |
} | |
for line in lines: | |
if 'π Detected Patterns:' in line: | |
in_patterns_section = True | |
continue | |
elif in_patterns_section and line.strip(): | |
if line.startswith('β'): | |
severity = 'high' | |
elif line.startswith('β οΈ'): | |
severity = 'moderate' | |
elif line.startswith('π'): | |
severity = 'low' | |
else: | |
continue | |
# Extract pattern text after the severity indicator | |
if ':' in line: | |
pattern_text = line.split(':', 1)[1].strip() | |
else: | |
pattern_text = line[2:].strip() # Remove emoji and space | |
# Parse individual patterns from the text | |
# Handle format like "blame shifting (1x), projection (2x)" | |
pattern_parts = pattern_text.split(',') | |
for part in pattern_parts: | |
# Clean up the pattern name | |
pattern_name = part.strip() | |
# Remove count indicators like "(1x)", "(2x)", etc. | |
pattern_name = re.sub(r'\s*\(\d+x?\)', '', pattern_name) | |
# Remove any remaining special characters and clean | |
pattern_name = pattern_name.strip().lower() | |
# Only add if it's a valid pattern name | |
if pattern_name in valid_patterns: | |
patterns.append({ | |
'name': pattern_name.replace('_', ' ').title(), | |
'severity': severity, | |
'description': get_pattern_description(pattern_name) | |
}) | |
elif line.strip() and not line.startswith(('β', 'β οΈ', 'π')) and in_patterns_section: | |
# Exit patterns section when we hit a non-pattern line | |
break | |
# Generate personalized recommendations | |
recommendations = generate_personalized_recommendations(abuse_intensity, patterns, safety_plan) | |
return { | |
'riskLevel': risk_level, | |
'riskScore': abuse_intensity, | |
'primaryConcerns': patterns[:3], # Top 3 most important | |
'allPatterns': patterns, | |
'riskStage': extract_risk_stage(analysis_output), | |
'emotionalTones': emotional_tones, | |
'darvoScore': darvo_score, | |
'personalizedRecommendations': recommendations, | |
'hasSafetyPlan': bool(safety_plan), | |
'safetyPlan': safety_plan, | |
'rawAnalysis': analysis_output | |
} | |
except Exception as e: | |
logger.error(f"Error formatting results: {e}") | |
return { | |
'riskLevel': 'low', | |
'riskScore': 0, | |
'primaryConcerns': [], | |
'allPatterns': [], | |
'riskStage': 'unknown', | |
'emotionalTones': [], | |
'darvoScore': 0.0, | |
'personalizedRecommendations': ['Consider speaking with a counselor about your relationship concerns'], | |
'hasSafetyPlan': False, | |
'safetyPlan': '', | |
'rawAnalysis': analysis_output | |
} | |
def get_pattern_description(pattern_name): | |
"""Get human-readable descriptions for patterns""" | |
descriptions = { | |
'control': 'Attempts to manage your behavior, decisions, or daily activities', | |
'gaslighting': 'Making you question your memory, perception, or reality', | |
'dismissiveness': 'Minimizing or invalidating your feelings and experiences', | |
'guilt tripping': 'Making you feel guilty to influence your behavior', | |
'blame shifting': 'Placing responsibility for their actions onto you', | |
'projection': 'Accusing you of behaviors they themselves exhibit', | |
'insults': 'Name-calling or personal attacks intended to hurt', | |
'contradictory statements': 'Saying things that conflict with previous statements', | |
'obscure language': 'Using vague or confusing language to avoid accountability', | |
'veiled threats': 'Indirect threats or intimidating language', | |
'stalking language': 'Monitoring, tracking, or obsessive behaviors', | |
'false concern': 'Expressing fake worry to manipulate or control', | |
'false equivalence': 'Comparing incomparable situations to justify behavior', | |
'future faking': 'Making promises about future behavior that are unlikely to be kept' | |
} | |
return descriptions.get(pattern_name.lower(), 'Concerning communication pattern detected') | |
def generate_personalized_recommendations(abuse_score, patterns, safety_plan): | |
"""Generate recommendations based on specific findings""" | |
recommendations = [] | |
# Base recommendations | |
if abuse_score >= 70: | |
recommendations.extend([ | |
'Document these conversations with dates and times', | |
'Reach out to a trusted friend or family member about your concerns', | |
'Consider contacting the National Domestic Violence Hotline for guidance' | |
]) | |
elif abuse_score >= 40: | |
recommendations.extend([ | |
'Keep a private journal of concerning interactions', | |
'Talk to someone you trust about these communication patterns', | |
'Consider counseling to explore healthy relationship dynamics' | |
]) | |
else: | |
recommendations.extend([ | |
'Continue monitoring communication patterns that concern you', | |
'Consider discussing communication styles with your partner when you feel safe to do so' | |
]) | |
# Pattern-specific recommendations | |
pattern_names = [p['name'].lower() for p in patterns] | |
if 'control' in pattern_names: | |
recommendations.append('Maintain your independence and decision-making autonomy') | |
if 'gaslighting' in pattern_names: | |
recommendations.append('Trust your memory and perceptions - consider keeping notes') | |
if any(p in pattern_names for p in ['stalking language', 'veiled threats']): | |
recommendations.append('Vary your routines and inform trusted people of your whereabouts') | |
if safety_plan: | |
recommendations.append('Review your personalized safety plan regularly') | |
return recommendations[:4] # Limit to 4 recommendations | |
def extract_risk_stage(analysis_output): | |
"""Extract risk stage from analysis output""" | |
if 'Tension-Building' in analysis_output: | |
return 'tension-building' | |
elif 'Escalation' in analysis_output: | |
return 'escalation' | |
elif 'Reconciliation' in analysis_output: | |
return 'reconciliation' | |
elif 'Honeymoon' in analysis_output: | |
return 'honeymoon' | |
else: | |
return 'unknown' | |
def analyze_composite_with_ui_format(msg1, msg2, msg3, *answers_and_none): | |
""" | |
Your existing analysis function, but returns formatted data for the new UI | |
""" | |
# Run your existing analysis | |
analysis_output, timeline_image, safety_plan = analyze_composite(msg1, msg2, msg3, *answers_and_none) | |
# Format for new UI | |
structured_results = format_results_for_new_ui(analysis_output, timeline_image, safety_plan) | |
# Return as JSON string for the new UI to parse | |
return json.dumps(structured_results), timeline_image, safety_plan | |
def create_mobile_friendly_interface(): | |
"""Create a responsive interface that works well on both mobile and desktop with full functionality""" | |
css = """ | |
/* Base responsive layout */ | |
.gradio-container { | |
max-width: 100% !important; | |
padding: 12px !important; | |
} | |
/* Desktop: side-by-side columns */ | |
@media (min-width: 1024px) { | |
.desktop-row { | |
display: flex !important; | |
gap: 20px !important; | |
} | |
.desktop-col-messages { | |
flex: 2 !important; | |
min-width: 400px !important; | |
} | |
.desktop-col-checklist { | |
flex: 1 !important; | |
min-width: 300px !important; | |
} | |
.desktop-col-results { | |
flex: 2 !important; | |
min-width: 400px !important; | |
} | |
.mobile-only { | |
display: none !important; | |
} | |
.mobile-expandable-btn { | |
display: none !important; | |
} | |
} | |
/* Mobile/Tablet: stack everything */ | |
@media (max-width: 1023px) { | |
.gradio-row { | |
flex-direction: column !important; | |
} | |
.gradio-column { | |
width: 100% !important; | |
margin-bottom: 20px !important; | |
} | |
.desktop-only { | |
display: none !important; | |
} | |
/* Mobile expandable sections */ | |
.mobile-expandable-content { | |
display: none; | |
} | |
.mobile-expandable-content.show { | |
display: block; | |
} | |
} | |
/* Button styling */ | |
.gradio-button { | |
margin-bottom: 8px !important; | |
} | |
@media (max-width: 1023px) { | |
.gradio-button { | |
width: 100% !important; | |
padding: 16px !important; | |
font-size: 16px !important; | |
} | |
.mobile-expand-btn { | |
background: #f9fafb !important; | |
border: 1px solid #e5e7eb !important; | |
color: #374151 !important; | |
padding: 12px 16px !important; | |
margin: 8px 0 !important; | |
border-radius: 8px !important; | |
font-weight: 500 !important; | |
} | |
.mobile-expand-btn:hover { | |
background: #f3f4f6 !important; | |
} | |
} | |
/* Results styling */ | |
.risk-low { border-left: 4px solid #10b981; background: #f0fdf4; } | |
.risk-moderate { border-left: 4px solid #f59e0b; background: #fffbeb; } | |
.risk-high { border-left: 4px solid #f97316; background: #fff7ed; } | |
.risk-critical { border-left: 4px solid #ef4444; background: #fef2f2; } | |
/* Clean group styling */ | |
.gradio-group { | |
border: none !important; | |
background: none !important; | |
padding: 0 !important; | |
margin: 0 !important; | |
box-shadow: none !important; | |
} | |
/* Force readable text colors */ | |
.gradio-html * { | |
color: #1f2937 !important; | |
} | |
.gradio-html p, .gradio-html div, .gradio-html span, .gradio-html li, .gradio-html ul, .gradio-html h1, .gradio-html h2, .gradio-html h3, .gradio-html h4 { | |
color: #1f2937 !important; | |
} | |
/* Form spacing */ | |
.gradio-textbox { | |
margin-bottom: 12px !important; | |
} | |
.gradio-checkbox { | |
margin-bottom: 6px !important; | |
font-size: 14px !important; | |
} | |
/* Compact checklist */ | |
.compact-checklist .gradio-checkbox { | |
margin-bottom: 4px !important; | |
} | |
/* Specific overrides for safety plan and analysis displays */ | |
.gradio-html pre { | |
color: #1f2937 !important; | |
background: #f9fafb !important; | |
padding: 12px !important; | |
border-radius: 8px !important; | |
} | |
""" | |
with gr.Blocks(css=css, title="Relationship Pattern Analyzer") as demo: | |
gr.HTML(""" | |
<div style="text-align: center; padding: 30px 20px;"> | |
<h1 style="font-size: 2.5rem; font-weight: bold; color: #1f2937; margin-bottom: 16px;"> | |
Relationship Pattern Analyzer | |
</h1> | |
<p style="font-size: 1.25rem; color: #6b7280; max-width: 600px; margin: 0 auto;"> | |
Share messages that concern you, and we'll help you understand what patterns might be present. | |
</p> | |
</div> | |
""") | |
with gr.Tab("Analyze Messages"): | |
# Privacy notice | |
gr.HTML(""" | |
<div style="background: #1e40af; border-radius: 12px; padding: 24px; margin-bottom: 24px; width: 100%; box-shadow: 0 4px 12px rgba(30, 64, 175, 0.3);"> | |
<div style="display: flex; align-items: center; margin-bottom: 12px;"> | |
<span style="font-size: 1.5rem; margin-right: 12px;">π‘οΈ</span> | |
<h3 style="color: white; margin: 0; font-size: 1.25rem; font-weight: 600;">Your Privacy Matters</h3> | |
</div> | |
<p style="color: #e0e7ff; margin: 0; font-size: 1rem; line-height: 1.5;"> | |
Your messages are analyzed locally and are not stored or shared. | |
This tool is for educational purposes and not a substitute for professional counseling. | |
</p> | |
</div> | |
""") | |
# Desktop layout | |
with gr.Row(elem_classes=["desktop-row", "desktop-only"], equal_height=True): | |
# Messages column | |
with gr.Column(elem_classes=["desktop-col-messages"], scale=4, min_width=400): | |
gr.HTML("<h3 style='margin-bottom: 16px;'>Share Your Messages</h3>") | |
gr.HTML(""" | |
<p style="color: #6b7280; margin-bottom: 20px;"> | |
Enter up to three messages that made you feel uncomfortable, confused, or concerned. | |
For the most accurate analysis, include messages from recent emotionally intense conversations. | |
</p> | |
""") | |
msg1_desktop = gr.Textbox( | |
label="Message 1 *", | |
placeholder="Enter the message here...", | |
lines=4 | |
) | |
msg2_desktop = gr.Textbox( | |
label="Message 2 (optional)", | |
placeholder="Enter the message here...", | |
lines=4 | |
) | |
msg3_desktop = gr.Textbox( | |
label="Message 3 (optional)", | |
placeholder="Enter the message here...", | |
lines=4 | |
) | |
# Checklist column | |
with gr.Column(elem_classes=["desktop-col-checklist"], scale=3, min_width=300): | |
gr.HTML("<h3 style='margin-bottom: 16px;'>Safety Checklist</h3>") | |
gr.HTML(""" | |
<p style="color: #6b7280; margin-bottom: 20px; font-size: 14px;"> | |
Optional but recommended. Check any that apply to your situation: | |
</p> | |
""") | |
checklist_items_desktop = [] | |
with gr.Column(elem_classes=["compact-checklist"]): | |
for question, weight in ESCALATION_QUESTIONS: | |
checklist_items_desktop.append(gr.Checkbox(label=question, elem_classes=["compact-checkbox"])) | |
none_selected_desktop = gr.Checkbox( | |
label="None of the above apply to my situation", | |
elem_classes=["none-checkbox"] | |
) | |
analyze_btn_desktop = gr.Button( | |
"Analyze Messages", | |
variant="primary", | |
size="lg" | |
) | |
# Results column | |
with gr.Column(elem_classes=["desktop-col-results"], scale=5, min_width=400): | |
gr.HTML("<h3 style='margin-bottom: 16px;'>Analysis Results</h3>") | |
gr.HTML(""" | |
<p style="color: #6b7280; margin-bottom: 20px; font-style: italic;"> | |
Results will appear here after analysis... | |
</p> | |
""") | |
# Desktop results components | |
results_json_desktop = gr.JSON(visible=False) | |
risk_summary_desktop = gr.HTML(visible=False) | |
concerns_display_desktop = gr.HTML(visible=False) | |
additional_metrics_desktop = gr.HTML(visible=False) | |
recommendations_display_desktop = gr.HTML(visible=False) | |
with gr.Row(visible=False) as action_buttons_desktop: | |
safety_plan_btn_desktop = gr.Button("π‘οΈ Get Safety Plan", variant="secondary") | |
full_analysis_btn_desktop = gr.Button("π Show Full Analysis", variant="secondary") | |
download_btn_desktop = gr.Button("π Download Report", variant="secondary") | |
full_analysis_display_desktop = gr.HTML(visible=False) | |
timeline_chart_desktop = gr.Image(visible=False, label="Pattern Timeline") | |
download_file_desktop = gr.File(label="Download Report", visible=False) | |
# Mobile layout | |
with gr.Column(elem_classes=["mobile-only"]): | |
# Message input - always visible | |
gr.HTML("<h3>π Share Your Messages</h3>") | |
gr.HTML(""" | |
<p style="color: #6b7280; margin-bottom: 16px; font-size: 14px;"> | |
Enter messages that made you uncomfortable or concerned: | |
</p> | |
""") | |
msg1_mobile = gr.Textbox( | |
label="Message 1 (required)", | |
placeholder="Enter the concerning message here...", | |
lines=3 | |
) | |
# Button to show additional messages | |
show_more_msgs_btn = gr.Button( | |
"β Add More Messages (Optional)", | |
elem_classes=["mobile-expand-btn", "mobile-expandable-btn"], | |
variant="secondary" | |
) | |
# Additional messages (hidden by default) | |
with gr.Column(visible=False) as additional_messages_mobile: | |
msg2_mobile = gr.Textbox( | |
label="Message 2 (optional)", | |
placeholder="Enter another message...", | |
lines=3 | |
) | |
msg3_mobile = gr.Textbox( | |
label="Message 3 (optional)", | |
placeholder="Enter a third message...", | |
lines=3 | |
) | |
# Button to show safety checklist | |
show_checklist_btn = gr.Button( | |
"β οΈ Safety Checklist (Optional)", | |
elem_classes=["mobile-expand-btn", "mobile-expandable-btn"], | |
variant="secondary" | |
) | |
# Safety checklist (hidden by default) | |
with gr.Column(visible=False) as safety_checklist_mobile: | |
gr.HTML(""" | |
<p style="color: #6b7280; margin-bottom: 16px; font-size: 14px;"> | |
Check any that apply to improve analysis accuracy: | |
</p> | |
""") | |
checklist_items_mobile = [] | |
for question, weight in ESCALATION_QUESTIONS: | |
checklist_items_mobile.append(gr.Checkbox(label=question, elem_classes=["compact-checkbox"])) | |
none_selected_mobile = gr.Checkbox( | |
label="None of the above apply", | |
elem_classes=["none-checkbox"] | |
) | |
# Analysis button | |
analyze_btn_mobile = gr.Button( | |
"π Analyze Messages", | |
variant="primary", | |
size="lg" | |
) | |
# Mobile results components | |
results_json_mobile = gr.JSON(visible=False) | |
risk_summary_mobile = gr.HTML(visible=False) | |
concerns_display_mobile = gr.HTML(visible=False) | |
additional_metrics_mobile = gr.HTML(visible=False) | |
recommendations_display_mobile = gr.HTML(visible=False) | |
with gr.Row(visible=False) as action_buttons_mobile: | |
safety_plan_btn_mobile = gr.Button("π‘οΈ Safety Plan", variant="secondary") | |
full_analysis_btn_mobile = gr.Button("π Full Analysis", variant="secondary") | |
download_btn_mobile = gr.Button("π Download", variant="secondary") | |
full_analysis_display_mobile = gr.HTML(visible=False) | |
timeline_chart_mobile = gr.Image(visible=False, label="Pattern Timeline") | |
download_file_mobile = gr.File(label="Download Report", visible=False) | |
with gr.Tab("Safety Resources"): | |
gr.HTML(""" | |
<div style="background: #dcfce7; border-radius: 12px; padding: 24px; margin-bottom: 20px;"> | |
<h2 style="color: #166534; margin-bottom: 16px;">π‘οΈ Safety Planning</h2> | |
<p style="color: #166534;"> | |
If you're concerned about your safety, here are immediate resources and steps you can take. | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML(""" | |
<div class="risk-card" style="background: #fef2f2; border-left: 4px solid #ef4444;"> | |
<h3 style="color: #991b1b;">π¨ Emergency Resources</h3> | |
<div style="margin: 16px 0;"> | |
<p><strong>911</strong> - For immediate danger</p> | |
<p><strong>1-800-799-7233</strong> - National DV Hotline (24/7)</p> | |
<p><strong>Text START to 88788</strong> - Crisis Text Line</p> | |
<p><strong>988</strong> - National Suicide Prevention Lifeline</p> | |
</div> | |
</div> | |
""") | |
with gr.Column(): | |
gr.HTML(""" | |
<div class="risk-card" style="background: #f0fdf4; border-left: 4px solid #10b981;"> | |
<h3 style="color: #065f46;">π Support Resources</h3> | |
<div style="margin: 16px 0;"> | |
<p><strong>thehotline.org</strong> - Online chat support</p> | |
<p><strong>Local counseling services</strong> - Professional support</p> | |
<p><strong>Trusted friends/family</strong> - Personal support network</p> | |
<p><strong>Legal advocacy</strong> - Know your rights</p> | |
</div> | |
</div> | |
""") | |
safety_plan_display = gr.HTML() | |
# Mobile expandable button handlers | |
def toggle_additional_messages(current_visibility): | |
return gr.update(visible=not current_visibility) | |
def toggle_safety_checklist(current_visibility): | |
return gr.update(visible=not current_visibility) | |
show_more_msgs_btn.click( | |
toggle_additional_messages, | |
inputs=[additional_messages_mobile], | |
outputs=[additional_messages_mobile] | |
) | |
show_checklist_btn.click( | |
toggle_safety_checklist, | |
inputs=[safety_checklist_mobile], | |
outputs=[safety_checklist_mobile] | |
) | |
# Full analysis processing function | |
def process_analysis(*inputs): | |
"""Process the analysis and format for display - FULL FUNCTIONALITY""" | |
msgs = inputs[:3] | |
checklist_responses = inputs[3:] | |
# Run analysis | |
analysis_result, timeline_img, safety_plan = analyze_composite_with_ui_format(*inputs) | |
# Parse results | |
try: | |
results = json.loads(analysis_result) | |
except: | |
results = {'riskLevel': 'low', 'riskScore': 0, 'primaryConcerns': [], 'emotionalTones': [], 'darvoScore': 0, 'personalizedRecommendations': []} | |
# Format risk summary | |
risk_config = { | |
'low': {'color': '#10b981', 'bg': '#f0fdf4', 'icon': 'π’', 'label': 'Low Risk'}, | |
'moderate': {'color': '#f59e0b', 'bg': '#fffbeb', 'icon': 'π‘', 'label': 'Moderate Concern'}, | |
'high': {'color': '#f97316', 'bg': '#fff7ed', 'icon': 'π ', 'label': 'High Risk'}, | |
'critical': {'color': '#ef4444', 'bg': '#fef2f2', 'icon': 'π΄', 'label': 'Critical Risk'} | |
} | |
config = risk_config.get(results['riskLevel'], risk_config['low']) | |
# Create pattern summary for display with explicit styling | |
pattern_summary = "" | |
if results.get('primaryConcerns'): | |
# Filter out the "escalation potential" concern when displaying in summary | |
actual_concerns = [concern for concern in results['primaryConcerns'] | |
if 'escalation potential' not in concern['name'].lower()] | |
if actual_concerns: | |
pattern_names = [concern['name'] for concern in actual_concerns] | |
if len(pattern_names) == 1: | |
pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{pattern_names[0]}</strong> pattern detected</span>" | |
elif len(pattern_names) == 2: | |
pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{pattern_names[0]}</strong> and <strong style='color: #1f2937 !important;'>{pattern_names[1]}</strong> patterns detected</span>" | |
else: | |
pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{', '.join(pattern_names[:-1])}</strong> and <strong style='color: #1f2937 !important;'>{pattern_names[-1]}</strong> patterns detected</span>" | |
else: | |
# Only escalation potential was found (incomplete checklist) | |
pattern_summary = "<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>Concerning communication patterns</strong> detected</span>" | |
else: | |
pattern_summary = "<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>Concerning communication patterns</strong> detected</span>" | |
risk_html = f""" | |
<div style="background: {config['bg']}; border-left: 4px solid {config['color']}; border-radius: 12px; padding: 24px; margin-bottom: 20px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);"> | |
<div style="display: flex; align-items: center; margin-bottom: 16px;"> | |
<span style="font-size: 2rem; margin-right: 12px;">{config['icon']}</span> | |
<div> | |
<h2 style="font-size: 1.5rem; font-weight: bold; color: #1f2937; margin: 0;">{config['label']}</h2> | |
<p style="color: #374151; margin: 0; font-weight: 500;">Based on the messages you shared</p> | |
</div> | |
</div> | |
<div style="background: rgba(0,0,0,0.05); border-radius: 8px; padding: 16px;"> | |
<div style="color: #1f2937 !important; margin: 0 0 8px 0; font-size: 1rem;"> | |
<span style="color: #1f2937 !important;">{pattern_summary}</span> | |
</div> | |
<p style="color: #374151 !important; margin: 0; font-weight: 600;"> | |
Risk Score: {results['riskScore']}% | |
</p> | |
</div> | |
</div> | |
""" | |
# Format concerns | |
concerns_html = "<h3 style='margin-top: 24px;'>Key Concerns Found</h3>" | |
if results.get('primaryConcerns'): | |
for concern in results['primaryConcerns']: | |
severity_colors = { | |
'high': '#fee2e2', | |
'moderate': '#fef3c7', | |
'low': '#dbeafe' | |
} | |
bg_color = severity_colors.get(concern.get('severity', 'low'), '#f3f4f6') | |
concerns_html += f""" | |
<div style="background: {bg_color}; border-radius: 8px; padding: 16px; margin: 8px 0;"> | |
<h4 style="margin: 0 0 8px 0; color: #1f2937;">{concern.get('name', 'Unknown Concern')}</h4> | |
<p style="margin: 0; color: #6b7280;">{concern.get('description', 'No description available')}</p> | |
</div> | |
""" | |
else: | |
concerns_html += "<p style='color: #6b7280; font-style: italic;'>No specific concerns identified in the messages.</p>" | |
# Additional Metrics Section | |
metrics_html = "<h3 style='margin-top: 24px;'>Additional Analysis</h3>" | |
# DARVO Score | |
darvo_score = results.get('darvoScore', 0) | |
if darvo_score > 0.25: | |
darvo_level = "High" if darvo_score >= 0.65 else "Moderate" | |
darvo_color = "#fee2e2" if darvo_score >= 0.65 else "#fef3c7" | |
metrics_html += f""" | |
<div style="background: {darvo_color}; border-radius: 8px; padding: 16px; margin: 8px 0;"> | |
<h4 style="margin: 0 0 8px 0; color: #1f2937;">π DARVO Score: {darvo_score:.3f} ({darvo_level})</h4> | |
<p style="margin: 0; color: #6b7280;"> | |
DARVO (Deny, Attack, Reverse Victim & Offender) indicates potential narrative manipulation where the speaker may be deflecting responsibility. | |
</p> | |
</div> | |
""" | |
# Emotional Tones | |
emotional_tones = results.get('emotionalTones', []) | |
if emotional_tones and any(tone != 'neutral' for tone in emotional_tones): | |
metrics_html += f""" | |
<div style="background: #f8fafc; border-radius: 8px; padding: 16px; margin: 8px 0;"> | |
<h4 style="margin: 0 0 8px 0; color: #1f2937;">π Emotional Tones Detected</h4> | |
<div style="margin: 8px 0;"> | |
""" | |
for i, tone in enumerate(emotional_tones): | |
if tone and tone != 'neutral': | |
metrics_html += f""" | |
<p style="margin: 4px 0; color: #6b7280;">β’ Message {i+1}: <em>{tone}</em></p> | |
""" | |
metrics_html += """ | |
</div> | |
<p style="margin: 8px 0 0 0; color: #6b7280; font-size: 14px;"> | |
Emotional tone analysis helps identify underlying manipulation tactics or concerning emotional patterns. | |
</p> | |
</div> | |
""" | |
# Format recommendations | |
rec_html = "<h3 style='margin-top: 24px;'>Personalized Recommendations</h3>" | |
recommendations = results.get('personalizedRecommendations', []) | |
for rec in recommendations: | |
rec_html += f""" | |
<div style="background: #f8fafc; border-left: 3px solid #3b82f6; border-radius: 8px; padding: 12px; margin: 8px 0;"> | |
<p style="margin: 0; color: #374151;">β’ {rec}</p> | |
</div> | |
""" | |
return ( | |
gr.update(value=analysis_result, visible=False), # results_json | |
gr.update(value=risk_html, visible=True), # risk_summary | |
gr.update(value=concerns_html, visible=True), # concerns_display | |
gr.update(value=metrics_html, visible=True), # additional_metrics | |
gr.update(value=rec_html, visible=True), # recommendations_display | |
gr.update(visible=True), # action_buttons | |
gr.update(visible=False), # full_analysis_display | |
gr.update(value=timeline_img, visible=True), # timeline_chart | |
gr.update(visible=False), # download_file | |
gr.update(value=safety_plan) # safety_plan_display | |
) | |
def show_full_analysis(results_json_str): | |
"""Show the full technical analysis""" | |
try: | |
if not results_json_str: | |
return gr.update(value="<p>No analysis data available. Please run the analysis first.</p>", visible=True) | |
# Handle both JSON string and dict inputs | |
if isinstance(results_json_str, str): | |
results = json.loads(results_json_str) | |
elif isinstance(results_json_str, dict): | |
results = results_json_str | |
else: | |
return gr.update(value="<p>Invalid data format. Please run the analysis again.</p>", visible=True) | |
# Create comprehensive full analysis display | |
full_html = f""" | |
<div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;"> | |
<h3 style="color: #1f2937 !important;">π Complete Technical Analysis</h3> | |
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;"> | |
<h4 style="color: #1f2937 !important;">π Risk Assessment Summary</h4> | |
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Level:</strong> {results.get('riskLevel', 'Unknown').title()}</p> | |
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Score:</strong> {results.get('riskScore', 'N/A')}%</p> | |
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Stage:</strong> {results.get('riskStage', 'Unknown').replace('-', ' ').title()}</p> | |
</div> | |
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;"> | |
<h4 style="color: #1f2937 !important;">π Behavioral Analysis</h4> | |
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">DARVO Score:</strong> {results.get('darvoScore', 0):.3f}</p> | |
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Emotional Tones:</strong> {', '.join(results.get('emotionalTones', ['None detected']))}</p> | |
</div> | |
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;"> | |
<h4 style="color: #1f2937 !important;">π Detected Patterns</h4> | |
""" | |
if results.get('allPatterns'): | |
for pattern in results['allPatterns']: | |
severity_badge = { | |
'high': 'π΄', | |
'moderate': 'π‘', | |
'low': 'π’' | |
}.get(pattern.get('severity', 'low'), 'βͺ') | |
full_html += f""" | |
<div style="margin: 8px 0; padding: 8px; background: white; border-radius: 4px;"> | |
<p style="margin: 0; color: #1f2937 !important;"><strong style="color: #1f2937 !important;">{severity_badge} {pattern.get('name', 'Unknown')}</strong></p> | |
<p style="margin: 4px 0 0 0; font-size: 14px; color: #6b7280 !important;">{pattern.get('description', 'No description available')}</p> | |
</div> | |
""" | |
else: | |
full_html += "<p style='color: #1f2937 !important;'>No specific patterns detected.</p>" | |
full_html += """ | |
</div> | |
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;"> | |
<h4 style="color: #1f2937 !important;">π Complete Analysis Output</h4> | |
<div style="max-height: 400px; overflow-y: auto; background: white; padding: 12px; border-radius: 4px; font-family: monospace; font-size: 14px; white-space: pre-wrap; color: #1f2937 !important;">""" | |
full_html += results.get('rawAnalysis', 'No detailed analysis available') | |
full_html += """ | |
</div> | |
</div> | |
</div> | |
""" | |
return gr.update(value=full_html, visible=True) | |
except Exception as e: | |
error_html = f""" | |
<div style="background: #fee2e2; border-radius: 8px; padding: 16px; margin-top: 20px;"> | |
<h4>β Error Loading Analysis</h4> | |
<p>Unable to parse analysis results: {str(e)}</p> | |
<p>Please try running the analysis again.</p> | |
</div> | |
""" | |
return gr.update(value=error_html, visible=True) | |
def generate_report(results_json_str, timeline_img): | |
"""Generate a downloadable report with all analysis information""" | |
import tempfile | |
import os | |
from datetime import datetime | |
try: | |
if not results_json_str: | |
return None | |
# Handle both JSON string and dict inputs | |
if isinstance(results_json_str, str): | |
results = json.loads(results_json_str) | |
elif isinstance(results_json_str, dict): | |
results = results_json_str | |
else: | |
return None | |
current_date = datetime.now().strftime("%Y-%m-%d") | |
current_time = datetime.now().strftime("%I:%M %p") | |
# Create comprehensive report | |
report = f"""RELATIONSHIP PATTERN ANALYSIS REPORT | |
Generated: {current_date} at {current_time} | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
EXECUTIVE SUMMARY | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
Risk Level: {results.get('riskLevel', 'Unknown').upper()} | |
Risk Score: {results.get('riskScore', 'N/A')}% | |
Risk Stage: {results.get('riskStage', 'Unknown').replace('-', ' ').title()} | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
DETECTED PATTERNS | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ""" | |
# Add detected patterns | |
if results.get('allPatterns'): | |
for pattern in results['allPatterns']: | |
severity_symbol = { | |
'high': 'π΄ HIGH', | |
'moderate': 'π‘ MODERATE', | |
'low': 'π’ LOW' | |
}.get(pattern.get('severity', 'low'), 'βͺ UNKNOWN') | |
report += f""" | |
{severity_symbol} SEVERITY: {pattern.get('name', 'Unknown Pattern')} | |
Description: {pattern.get('description', 'No description available')}""" | |
else: | |
report += "\n\nNo specific patterns detected in the analysis." | |
# Add behavioral analysis | |
report += f""" | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
BEHAVIORAL ANALYSIS | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
DARVO Score: {results.get('darvoScore', 0):.3f}""" | |
darvo_score = results.get('darvoScore', 0) | |
if darvo_score > 0.65: | |
report += "\nDARVO Level: HIGH - Strong indication of narrative manipulation" | |
elif darvo_score > 0.25: | |
report += "\nDARVO Level: MODERATE - Some indication of narrative manipulation" | |
else: | |
report += "\nDARVO Level: LOW - Limited indication of narrative manipulation" | |
report += """\n | |
DARVO Definition: Deny, Attack, Reverse Victim & Offender - a manipulation | |
tactic where the perpetrator denies wrongdoing, attacks the victim, and | |
positions themselves as the victim. | |
Emotional Tone Analysis:""" | |
# Add emotional tones | |
emotional_tones = results.get('emotionalTones', []) | |
if emotional_tones: | |
for i, tone in enumerate(emotional_tones): | |
if tone and tone != 'neutral': | |
report += f"\nMessage {i+1}: {tone}" | |
if not any(tone != 'neutral' for tone in emotional_tones): | |
report += "\nNo concerning emotional tones detected." | |
else: | |
report += "\nNo emotional tone data available." | |
# Add recommendations | |
report += f""" | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
PERSONALIZED RECOMMENDATIONS | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ""" | |
recommendations = results.get('personalizedRecommendations', []) | |
for i, rec in enumerate(recommendations, 1): | |
report += f"\n{i}. {rec}" | |
# Add safety planning | |
safety_plan = results.get('safetyPlan', '') | |
if safety_plan: | |
report += f""" | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
SAFETY PLANNING | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
{safety_plan}""" | |
# Add emergency resources | |
report += """ | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
EMERGENCY RESOURCES | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
π¨ IMMEDIATE EMERGENCY: Call 911 | |
24/7 CRISIS SUPPORT: | |
β’ National Domestic Violence Hotline: 1-800-799-7233 | |
β’ Crisis Text Line: Text START to 88788 | |
β’ National Suicide Prevention Lifeline: 988 | |
β’ Online Chat Support: thehotline.org | |
ADDITIONAL SUPPORT: | |
β’ Local counseling services | |
β’ Legal advocacy organizations | |
β’ Trusted friends and family | |
β’ Employee assistance programs (if available) | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
IMPORTANT DISCLAIMERS | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
β’ This analysis is for educational purposes only | |
β’ It is not a substitute for professional counseling or legal advice | |
β’ Trust your instincts about your safety | |
β’ Consider sharing this report with a trusted counselor or advocate | |
β’ Your messages were analyzed locally and not stored or shared | |
Report Generated by: Relationship Pattern Analyzer | |
Analysis Date: {current_date} | |
Report Version: 1.0 | |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ""" | |
# Create temporary file | |
temp_file = tempfile.NamedTemporaryFile( | |
mode='w', | |
suffix='.txt', | |
prefix=f'relationship_analysis_report_{current_date.replace("-", "_")}_', | |
delete=False, | |
encoding='utf-8' | |
) | |
temp_file.write(report) | |
temp_file.close() | |
return temp_file.name | |
except Exception as e: | |
# Create error report | |
error_report = f"""RELATIONSHIP PATTERN ANALYSIS REPORT - ERROR | |
Generated: {datetime.now().strftime("%Y-%m-%d at %I:%M %p")} | |
An error occurred while generating the full report: {str(e)} | |
Please try running the analysis again or contact support if the issue persists.""" | |
temp_file = tempfile.NamedTemporaryFile( | |
mode='w', | |
suffix='.txt', | |
prefix='error_report_', | |
delete=False, | |
encoding='utf-8' | |
) | |
temp_file.write(error_report) | |
temp_file.close() | |
return temp_file.name | |
def show_safety_plan_content(safety_plan_content): | |
"""Display the personalized safety plan""" | |
if safety_plan_content: | |
safety_plan_html = f""" | |
<div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;"> | |
<h3 style="color: #1f2937 !important;">π‘οΈ Your Personalized Safety Plan</h3> | |
<div style="background: #f0fdf4; border-radius: 8px; padding: 16px; margin: 16px 0;"> | |
<div style="white-space: pre-wrap; font-family: inherit; font-size: 14px; line-height: 1.5; color: #1f2937 !important;">{safety_plan_content}</div> | |
</div> | |
</div> | |
""" | |
return gr.update(value=safety_plan_html, visible=True) | |
else: | |
# Fallback to general safety information | |
general_safety = """ | |
<div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;"> | |
<h3 style="color: #1f2937 !important;">π‘οΈ Safety Planning</h3> | |
<div style="background: #f0fdf4; border-radius: 8px; padding: 16px; margin: 16px 0;"> | |
<h4 style="color: #1f2937 !important;">Immediate Safety Steps:</h4> | |
<ul style="color: #1f2937 !important;"> | |
<li style="color: #1f2937 !important;">Trust your instincts - if something feels wrong, it probably is</li> | |
<li style="color: #1f2937 !important;">Document concerning incidents with dates and details</li> | |
<li style="color: #1f2937 !important;">Identify safe people you can reach out to</li> | |
<li style="color: #1f2937 !important;">Keep important documents and emergency contacts accessible</li> | |
<li style="color: #1f2937 !important;">Consider speaking with a counselor or trusted friend</li> | |
</ul> | |
<h4 style="color: #1f2937 !important;">Emergency Resources:</h4> | |
<ul style="color: #1f2937 !important;"> | |
<li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">911</strong> - For immediate danger</li> | |
<li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">1-800-799-7233</strong> - National DV Hotline (24/7)</li> | |
<li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Text START to 88788</strong> - Crisis Text Line</li> | |
</ul> | |
</div> | |
</div> | |
""" | |
return gr.update(value=general_safety, visible=True) | |
# Connect desktop event handlers | |
analyze_btn_desktop.click( | |
process_analysis, | |
inputs=[msg1_desktop, msg2_desktop, msg3_desktop] + checklist_items_desktop + [none_selected_desktop], | |
outputs=[ | |
results_json_desktop, risk_summary_desktop, concerns_display_desktop, | |
additional_metrics_desktop, recommendations_display_desktop, action_buttons_desktop, | |
full_analysis_display_desktop, timeline_chart_desktop, download_file_desktop, safety_plan_display | |
] | |
) | |
full_analysis_btn_desktop.click( | |
show_full_analysis, | |
inputs=[results_json_desktop], | |
outputs=[full_analysis_display_desktop] | |
) | |
download_btn_desktop.click( | |
generate_report, | |
inputs=[results_json_desktop, timeline_chart_desktop], | |
outputs=[download_file_desktop] | |
).then( | |
lambda: gr.update(visible=True), | |
outputs=[download_file_desktop] | |
) | |
safety_plan_btn_desktop.click( | |
show_safety_plan_content, | |
inputs=[safety_plan_display], | |
outputs=[full_analysis_display_desktop] | |
) | |
# Connect mobile event handlers | |
analyze_btn_mobile.click( | |
process_analysis, | |
inputs=[msg1_mobile, msg2_mobile, msg3_mobile] + checklist_items_mobile + [none_selected_mobile], | |
outputs=[ | |
results_json_mobile, risk_summary_mobile, concerns_display_mobile, | |
additional_metrics_mobile, recommendations_display_mobile, action_buttons_mobile, | |
full_analysis_display_mobile, timeline_chart_mobile, download_file_mobile, safety_plan_display | |
] | |
) | |
full_analysis_btn_mobile.click( | |
show_full_analysis, | |
inputs=[results_json_mobile], | |
outputs=[full_analysis_display_mobile] | |
) | |
download_btn_mobile.click( | |
generate_report, | |
inputs=[results_json_mobile, timeline_chart_mobile], | |
outputs=[download_file_mobile] | |
).then( | |
lambda: gr.update(visible=True), | |
outputs=[download_file_mobile] | |
) | |
safety_plan_btn_mobile.click( | |
show_safety_plan_content, | |
inputs=[safety_plan_display], | |
outputs=[full_analysis_display_mobile] | |
) | |
return demo | |
if __name__ == "__main__": | |
try: | |
print("π± Creating interface...") | |
demo = create_mobile_friendly_interface() | |
print("β Interface created successfully") | |
print("π Launching demo...") | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False | |
) | |
print("π App launched!") | |
except Exception as e: | |
print(f"β Error: {e}") | |
import traceback | |
traceback.print_exc() | |
raise |