Tether / app.py
SamanthaStorm's picture
Update app.py
68ecdb1 verified
raw
history blame
5 kB
import gradio as gr
import torch
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import numpy as np
# Load model and tokenizer with trust_remote_code in case it's needed
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Define labels (17 total)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control",
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults",
"obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat",
"extreme_control"
]
# Custom thresholds for each label (make sure these match your original settings)
THRESHOLDS = {
"gaslighting": 0.25,
"mockery": 0.15,
"dismissiveness": 0.30, # original value, not 0.30
"control": 0.43,
"guilt_tripping": 0.19,
"apology_baiting": 0.45,
"blame_shifting": 0.23,
"projection": 0.50,
"contradictory_statements": 0.25,
"manipulation": 0.25,
"deflection": 0.30,
"insults": 0.34,
"obscure_formal": 0.25,
"recovery_phase": 0.25,
"suicidal_threat": 0.45,
"physical_threat": 0.31,
"extreme_control": 0.36,
"non_abusive": 0.40
}
# Define label groups using slicing (first 14: abuse patterns, last 3: danger cues)
PATTERN_LABELS = LABELS[:14]
DANGER_LABELS = LABELS[14:17]
def calculate_abuse_level(scores, thresholds):
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
if not triggered_scores:
return 0.0
return round(np.mean(triggered_scores) * 100, 2)
def interpret_abuse_level(score):
if score > 80:
return "Extreme / High Risk"
elif score > 60:
return "Severe / Harmful Pattern Present"
elif score > 40:
return "Likely Abuse"
elif score > 20:
return "Mild Concern"
else:
return "Very Low / Likely Safe"
def analyze_messages(input_text):
input_text = input_text.strip()
if not input_text:
return "Please enter a message for analysis.", None
# Tokenize input and generate model predictions
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Count the number of triggered abuse pattern and danger flags based on thresholds
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:17]))
# Build formatted raw score display
score_lines = [
f"{label:25}: {score:.3f}" for label, score in zip(PATTERN_LABELS + DANGER_LABELS, scores)
]
raw_score_output = "\n".join(score_lines)
# Calculate overall abuse level and interpret it
abuse_level = calculate_abuse_level(scores, THRESHOLDS)
abuse_description = interpret_abuse_level(abuse_level)
# Resource logic based on the number of danger cues
if danger_flag_count >= 2:
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
else:
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
# Get top 2 highest scoring abuse patterns (excluding 'non_abusive')
scored_patterns = [(label, score) for label, score in zip(PATTERN_LABELS, scores[:14])]
top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2]
top_patterns_str = "\n".join([f"• {label.replace('_', ' ').title()}" for label, _ in top_patterns])
# Format final result
result = (
f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n"
"This message contains signs of emotionally harmful communication that may indicate abusive patterns.\n\n"
f"Most Likely Patterns:\n{top_patterns_str}\n\n"
f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
"The Danger Assessment is a validated tool that helps identify serious risk in intimate partner violence. "
"It flags communication patterns associated with increased risk of severe harm. "
"For more info, consider reaching out to support groups or professionals.\n\n"
f"Resources: {resources}"
)
# Return both a text summary and a JSON-like dict of scores per label
return result
# Updated Gradio Interface using new component syntax
iface = gr.Interface(
fn=analyze_messages,
inputs=gr.Textbox(lines=10, placeholder="Enter message here..."),
outputs=[
gr.Textbox(label="Analysis Result"),
],
title="Abuse Pattern Detector"
)
if __name__ == "__main__":
iface.launch()