Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,997 Bytes
d6e219c f1948f2 a9d4250 f1948f2 5dfb1ca f1948f2 5dfb1ca a9d4250 5dfb1ca 79936aa f1948f2 5dfb1ca c303ab8 44dafc4 293a004 44dafc4 99463df 44dafc4 99463df 44dafc4 99463df c303ab8 4292d1b 5dfb1ca e178791 612e2a1 4292d1b 79936aa f1948f2 4292d1b 79936aa 5dfb1ca f1948f2 4292d1b 79936aa 5dfb1ca e178791 612e2a1 68ecdb1 99463df 68ecdb1 79936aa 68ecdb1 79936aa 5dfb1ca 68ecdb1 5dfb1ca b390ecc 5d7c4ba 5dfb1ca ab8c96f 5dfb1ca ab8c96f 4292d1b 5dfb1ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import torch
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import numpy as np
# Load model and tokenizer with trust_remote_code in case it's needed
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Define labels (17 total)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control",
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults",
"obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat",
"extreme_control"
]
# Custom thresholds for each label (make sure these match your original settings)
THRESHOLDS = {
"gaslighting": 0.25,
"mockery": 0.15,
"dismissiveness": 0.30, # original value, not 0.30
"control": 0.43,
"guilt_tripping": 0.19,
"apology_baiting": 0.45,
"blame_shifting": 0.23,
"projection": 0.50,
"contradictory_statements": 0.25,
"manipulation": 0.25,
"deflection": 0.30,
"insults": 0.34,
"obscure_formal": 0.25,
"recovery_phase": 0.25,
"suicidal_threat": 0.45,
"physical_threat": 0.31,
"extreme_control": 0.36,
"non_abusive": 0.40
}
# Define label groups using slicing (first 14: abuse patterns, last 3: danger cues)
PATTERN_LABELS = LABELS[:14]
DANGER_LABELS = LABELS[14:17]
def calculate_abuse_level(scores, thresholds):
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
if not triggered_scores:
return 0.0
return round(np.mean(triggered_scores) * 100, 2)
def interpret_abuse_level(score):
if score > 80:
return "Extreme / High Risk"
elif score > 60:
return "Severe / Harmful Pattern Present"
elif score > 40:
return "Likely Abuse"
elif score > 20:
return "Mild Concern"
else:
return "Very Low / Likely Safe"
def analyze_messages(input_text):
input_text = input_text.strip()
if not input_text:
return "Please enter a message for analysis.", None
# Tokenize input and generate model predictions
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Count the number of triggered abuse pattern and danger flags based on thresholds
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:17]))
# Build formatted raw score display
score_lines = [
f"{label:25}: {score:.3f}" for label, score in zip(PATTERN_LABELS + DANGER_LABELS, scores)
]
raw_score_output = "\n".join(score_lines)
# Calculate overall abuse level and interpret it
abuse_level = calculate_abuse_level(scores, THRESHOLDS)
abuse_description = interpret_abuse_level(abuse_level)
# Resource logic based on the number of danger cues
if danger_flag_count >= 2:
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
else:
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
# Get top 2 highest scoring abuse patterns (excluding 'non_abusive')
scored_patterns = [(label, score) for label, score in zip(PATTERN_LABELS, scores[:14])]
top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2]
top_patterns_str = "\n".join([f"• {label.replace('_', ' ').title()}" for label, _ in top_patterns])
# Format final result
result = (
f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n"
"This message contains signs of emotionally harmful communication that may indicate abusive patterns.\n\n"
f"Most Likely Patterns:\n{top_patterns_str}\n\n"
f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
"The Danger Assessment is a validated tool that helps identify serious risk in intimate partner violence. "
"It flags communication patterns associated with increased risk of severe harm. "
"For more info, consider reaching out to support groups or professionals.\n\n"
f"Resources: {resources}"
)
# Return both a text summary and a JSON-like dict of scores per label
return result
# Updated Gradio Interface using new component syntax
iface = gr.Interface(
fn=analyze_messages,
inputs=gr.Textbox(lines=10, placeholder="Enter message here..."),
outputs=[
gr.Textbox(label="Analysis Result"),
],
title="Abuse Pattern Detector"
)
if __name__ == "__main__":
iface.launch() |