|
import gradio as gr |
|
from groq import Groq |
|
import os |
|
import threading |
|
import tempfile |
|
import logging |
|
from moviepy.editor import TextClip, concatenate_videoclips, AudioFileClip, ColorClip |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
os.environ["HTTP_PROXY"] = "" |
|
os.environ["HTTPS_PROXY"] = "" |
|
|
|
|
|
try: |
|
client = Groq(api_key=os.environ.get("GROQ_API_KEY", "")) |
|
logger.info("Groq client initialized successfully with API key: %s", "set" if os.environ.get("GROQ_API_KEY") else "not set") |
|
except Exception as e: |
|
logger.error("Failed to initialize Groq client: %s", str(e)) |
|
raise |
|
|
|
|
|
try: |
|
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", fallback=None) |
|
logger.info("Model 1 loaded successfully: SD3.5-Turbo-Realism-2.0-LoRA") |
|
except Exception as e: |
|
logger.error("Failed to load Model 1: %s", str(e)) |
|
model1 = None |
|
|
|
try: |
|
model2 = gr.load("models/Purz/face-projection", fallback=None) |
|
logger.info("Model 2 loaded successfully: face-projection") |
|
except Exception as e: |
|
logger.error("Failed to load Model 2: %s", str(e)) |
|
model2 = None |
|
|
|
|
|
stop_event = threading.Event() |
|
|
|
|
|
def generate_tutor_output(subject, difficulty, student_input): |
|
if not all([subject, difficulty, student_input]): |
|
return '{"lesson": "Please fill in all fields.", "question": "", "feedback": ""}' |
|
|
|
prompt = f""" |
|
You are an expert tutor in {subject} at the {difficulty} level. |
|
The student has provided the following input: "{student_input}" |
|
|
|
Please generate: |
|
1. A brief, engaging lesson on the topic (2-3 paragraphs) |
|
2. A thought-provoking question to check understanding |
|
3. Constructive feedback on the student's input |
|
|
|
Format your response as a JSON object with keys: "lesson", "question", "feedback" |
|
""" |
|
|
|
try: |
|
completion = client.chat.completions.create( |
|
messages=[{ |
|
"role": "system", |
|
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students." |
|
}, { |
|
"role": "user", |
|
"content": prompt, |
|
}], |
|
model="mixtral-8x7b-32768", |
|
max_tokens=1000, |
|
) |
|
return completion.choices[0].message.content |
|
except Exception as e: |
|
logger.error("Error in generate_tutor_output: %s", str(e)) |
|
return '{"lesson": "Error generating lesson.", "question": "", "feedback": ""}' |
|
|
|
|
|
def generate_images(text, selected_model): |
|
stop_event.clear() |
|
if not text: |
|
return ["No text provided."] * 3 |
|
|
|
if selected_model == "Model 1 (Turbo Realism)": |
|
model = model1 |
|
elif selected_model == "Model 2 (Face Projection)": |
|
model = model2 |
|
else: |
|
return ["Invalid model selection."] * 3 |
|
|
|
if model is None: |
|
return ["Selected model is not available."] * 3 |
|
|
|
results = [] |
|
for i in range(3): |
|
if stop_event.is_set(): |
|
return ["Image generation stopped by user."] * 3 |
|
modified_text = f"{text} variation {i+1}" |
|
try: |
|
result = model(modified_text) |
|
results.append(result) |
|
except Exception as e: |
|
logger.error("Error generating image %d: %s", i+1, str(e)) |
|
results.append(None) |
|
return results |
|
|
|
|
|
def generate_text_to_video(text): |
|
if not text: |
|
return "No text provided for video generation." |
|
|
|
try: |
|
narration_prompt = f"Convert this text to a natural-sounding narration: {text}" |
|
narration_response = client.chat.completions.create( |
|
messages=[{ |
|
"role": "system", |
|
"content": "You are an AI voice generator that produces natural, human-like speech." |
|
}, { |
|
"role": "user", |
|
"content": narration_prompt, |
|
}], |
|
model="mixtral-8x7b-32768", |
|
max_tokens=500, |
|
) |
|
narration_text = narration_response.choices[0].message.content |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio: |
|
audio_duration = len(narration_text.split()) / 2 |
|
audio = ColorClip(size=(100, 100), color=(0, 0, 0), duration=audio_duration).set_audio(None) |
|
audio.write_audiofile(temp_audio.name, fps=44100, logger=None) |
|
|
|
clips = [] |
|
words = narration_text.split() |
|
chunk_size = 10 |
|
for i in range(0, len(words), chunk_size): |
|
chunk = " ".join(words[i:i + chunk_size]) |
|
clip = TextClip(chunk, fontsize=50, color='white', size=(1280, 720), bg_color='black') |
|
clip = clip.set_duration(audio_duration / (len(words) / chunk_size)) |
|
clips.append(clip) |
|
|
|
final_video = concatenate_videoclips(clips) |
|
audio_clip = AudioFileClip(temp_audio.name) |
|
final_video = final_video.set_audio(audio_clip) |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video: |
|
final_video.write_videofile(temp_video.name, fps=24, logger=None) |
|
video_path = temp_video.name |
|
|
|
os.unlink(temp_audio.name) |
|
return video_path |
|
except Exception as e: |
|
logger.error("Error generating video: %s", str(e)) |
|
return f"Error generating video: {str(e)}" |
|
|
|
|
|
with gr.Blocks(title="AI Tutor with Visuals") as demo: |
|
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
subject = gr.Dropdown( |
|
["Math", "Science", "History", "Literature", "Code", "AI"], |
|
label="Subject", |
|
info="Choose the subject of your lesson", |
|
value="Math" |
|
) |
|
difficulty = gr.Radio( |
|
["Beginner", "Intermediate", "Advanced"], |
|
label="Difficulty Level", |
|
info="Select your proficiency level", |
|
value="Beginner" |
|
) |
|
student_input = gr.Textbox( |
|
placeholder="Type your query here...", |
|
label="Your Input", |
|
info="Enter the topic you want to learn" |
|
) |
|
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
lesson_output = gr.Markdown(label="Lesson") |
|
question_output = gr.Markdown(label="Comprehension Question") |
|
feedback_output = gr.Markdown(label="Feedback") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
model_selector = gr.Radio( |
|
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"], |
|
label="Select Image Generation Model", |
|
value="Model 1 (Turbo Realism)" |
|
) |
|
submit_button_visual = gr.Button("Generate Visuals", variant="primary") |
|
submit_button_video = gr.Button("Generate Video with Voice", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
output1 = gr.Image(label="Generated Image 1") |
|
output2 = gr.Image(label="Generated Image 2") |
|
output3 = gr.Image(label="Generated Image 3") |
|
video_output = gr.Video(label="Generated Video with Voice") |
|
|
|
gr.Markdown(""" |
|
### How to Use |
|
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'. |
|
2. **Visual Section**: Select the model, then click 'Generate Visuals' for 3 images or 'Generate Video with Voice' for a narrated video. |
|
3. Review the AI-generated content to enhance your learning experience! |
|
""") |
|
|
|
def process_output_text(subject, difficulty, student_input): |
|
try: |
|
tutor_output = generate_tutor_output(subject, difficulty, student_input) |
|
parsed = eval(tutor_output) |
|
return parsed["lesson"], parsed["question"], parsed["feedback"] |
|
except Exception as e: |
|
logger.error("Error parsing tutor output: %s", str(e)) |
|
return "Error parsing output", "No question available", "No feedback available" |
|
|
|
def process_output_visual(text, selected_model): |
|
try: |
|
images = generate_images(text, selected_model) |
|
return images[0], images[1], images[2] |
|
except Exception as e: |
|
logger.error("Error in process_output_visual: %s", str(e)) |
|
return None, None, None |
|
|
|
def process_output_video(text): |
|
try: |
|
video_path = generate_text_to_video(text) |
|
return video_path |
|
except Exception as e: |
|
logger.error("Error in process_output_video: %s", str(e)) |
|
return None |
|
|
|
submit_button_text.click( |
|
fn=process_output_text, |
|
inputs=[subject, difficulty, student_input], |
|
outputs=[lesson_output, question_output, feedback_output] |
|
) |
|
submit_button_visual.click( |
|
fn=process_output_visual, |
|
inputs=[student_input, model_selector], |
|
outputs=[output1, output2, output3] |
|
) |
|
submit_button_video.click( |
|
fn=process_output_video, |
|
inputs=[student_input], |
|
outputs=[video_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True) |