File size: 9,657 Bytes
c051efa 2142c80 f3ff1c7 2142c80 fce7101 e7590dc fce7101 e7590dc 7cc6b87 b4553e5 e182566 8b9ef6d 7cc6b87 b4553e5 75e9167 7acd937 8b7994d 2142c80 97be484 75e9167 f3ff1c7 0e279cb 10b378e 2343f3f 0e279cb 75e9167 0e279cb e7590dc cb8389b 75e9167 5942ddb e7590dc 42c9a95 7a7b7b1 e7590dc 75e9167 e182566 3306257 75e9167 3306257 75e9167 e7590dc 3306257 75e9167 3306257 75e9167 3306257 9cb89a1 3306257 97be484 3306257 75e9167 3306257 75e9167 301ce8c 3306257 c72116f 3306257 75e9167 3306257 2203b4d e15e9df 3306257 2203b4d 3306257 75e9167 3306257 e15e9df 01f94ab 3306257 e7590dc 75e9167 e7590dc 0b9cf76 e7590dc 75d80d2 852d7e0 75d80d2 852d7e0 75d80d2 852d7e0 0b9cf76 e7590dc 01f94ab 75e9167 8a96746 97be484 d544b01 0b9cf76 75d80d2 3432366 7baf15a e7590dc 6d65b18 b4553e5 3432366 75e9167 e7590dc 85d90c4 e7590dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import gradio as gr
import os
import json
import requests
import xml.etree.ElementTree as ET
from huggingface_hub import HfApi, create_repo
import schedule
import time
import threading
# Log dosyası adı ve yolu
LOG_FILE = 'chat_logs.txt'
persistent_dir = '/persistent-storage'
if os.path.exists(persistent_dir):
LOG_FILE = os.path.join(persistent_dir, LOG_FILE)
else:
LOG_FILE = 'chat_logs.txt'
print(f"Dosya yolu: {os.path.abspath(LOG_FILE)}")
# API ayarları
API_URL = "https://api.openai.com/v1/chat/completions"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
print("Hata: OPENAI_API_KEY çevre değişkeni ayarlanmamış!")
# Trek bisiklet ürünlerini çekme
url = 'https://www.trekbisiklet.com.tr/output/8582384479'
response = requests.get(url)
root = ET.fromstring(response.content)
products = []
for item in root.findall('item'):
if item.find('isOptionOfAProduct').text == '1' and item.find('stockAmount').text > '0':
name_words = item.find('rootlabel').text.lower().split()
name = name_words[0]
full_name = ' '.join(name_words)
stockAmount = "stokta"
price = item.find('priceWithTax').text
item_info = (stockAmount, price)
products.append((name, item_info, full_name))
# Hugging Face token
hfapi = os.getenv("hfapi")
if not hfapi:
raise ValueError("hfapi ortam değişkeni ayarlanmamış!")
# Repository oluşturma
create_repo("BF", token=hfapi, repo_type="space", space_sdk="gradio", exist_ok=True)
# Sohbeti yerel dosyaya kaydetme
def save_chat(chatbot):
file_path = os.path.abspath(LOG_FILE)
try:
with open(LOG_FILE, 'a', encoding='utf-8') as f:
f.write("\n--- Zamanlanmış Kayıt: {} ---\n".format(time.strftime("%Y-%m-%d %H:%M:%S")))
for msg in chatbot:
f.write(f"{msg['role'].capitalize()}: {msg['content']}\n")
print(f"Sohbet dosyaya kaydedildi: {file_path}")
return True
except Exception as e:
print(f"Kayıt hatası: {e}")
return False
# Hugging Face’e log dosyasını yükleme
def upload_logs_to_hf(repo_id: str, hf_token: str, local_log_file: str = LOG_FILE):
api = HfApi(token=hf_token)
try:
api.upload_file(
path_or_fileobj=local_log_file,
path_in_repo="chat_logs.txt",
repo_id=repo_id,
repo_type="space",
commit_message="Otomatik log dosyası güncellemesi - {}".format(time.strftime("%Y-%m-%d %H:%M:%S"))
)
print(f"Log dosyası HF'ye yüklendi: {local_log_file}")
return True
except Exception as e:
print(f"HF yükleme hatası: {e}")
return False
# Zamanlayıcıyı arka planda çalıştırma
def run_scheduler(chatbot_ref):
def scheduled_save_and_upload():
if chatbot_ref:
save_success = save_chat(chatbot_ref)
if save_success:
HF_REPO_ID = "SamiKoen/BF" # Kendi repo ID’nizi buraya koyun
upload_logs_to_hf(HF_REPO_ID, hfapi)
print(f"Zamanlanmış işlem tamamlandı: {time.strftime('%H:%M:%S')}")
schedule.every().day.at("09:00").do(scheduled_save_and_upload)
schedule.every().day.at("15:00").do(scheduled_save_and_upload)
schedule.every().day.at("21:00").do(scheduled_save_and_upload)
while True:
schedule.run_pending()
time.sleep(60)
# Chatbot tahmin fonksiyonu
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=None, history=None):
if chatbot is None:
chatbot = []
if history is None:
history = []
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
print(f"System message: {system_msg}")
multi_turn_message = [
{"role": "system", "content": "Bir önceki sohbeti unut. Vereceğin ürün bilgisi, bu bilginin içinde yan yana yazılmıyorsa veya arada başka bilgiler yazıyor ise, o bilgiyi vermeyeceksin çünkü o bilgi yanlıştır."}
]
messages = multi_turn_message.copy()
input_words = [str(word).lower() for word in inputs.split()]
for product_info in products:
if product_info[0] in input_words:
new_msg = f"{product_info[2]} {product_info[1][0]} ve fiyatı EURO {product_info[1][1]}"
print(new_msg)
messages.append({"role": "system", "content": new_msg})
for data in chatbot:
messages.append({"role": data["role"], "content": data["content"]})
messages.append({"role": "user", "content": inputs})
payload = {
"model": "gpt-4o",
"messages": messages,
"temperature": 0.7,
"top_p": 0.9,
"n": 1,
"stream": True,
"presence_penalty": 0,
"frequency_penalty": 0,
}
chat_counter += 1
history.append(inputs)
try:
with open(LOG_FILE, 'a', encoding='utf-8') as f:
f.write(f"User: {inputs}\n")
print(f"Kullanıcı mesajı dosyaya yazıldı: {inputs}")
except Exception as e:
print(f"Dosya yazma hatası (Kullanıcı): {e}")
chatbot.append({"role": "user", "content": inputs})
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
if response.status_code != 200:
print(f"API hatası: {response.text}")
return chatbot, history, chat_counter
assistant_response = ""
for chunk in response.iter_lines():
if not chunk:
continue
chunk_str = chunk.decode('utf-8')
if chunk_str.startswith("data: ") and chunk_str != "data: [DONE]":
try:
chunk_data = json.loads(chunk_str[6:])
delta = chunk_data['choices'][0]['delta']
if 'content' in delta and delta['content']:
assistant_response += delta['content']
except json.JSONDecodeError as e:
print(f"JSON parse hatası: {e} - Chunk: {chunk_str}")
elif chunk_str == "data: [DONE]":
break
if assistant_response:
history.append(assistant_response)
chatbot.append({"role": "assistant", "content": assistant_response})
try:
with open(LOG_FILE, 'a', encoding='utf-8') as f:
f.write(f"Bot: {assistant_response}\n")
print(f"Bot yanıtı dosyaya yazıldı: {assistant_response}")
except Exception as e:
print(f"Dosya yazma hatası (Bot): {e}")
return chatbot, history, chat_counter
# Textbox’ı sıfırlama
def reset_textbox():
return gr.update(value='')
# Gradio CSS
demo_css = """
#send_button {
background-color: #0b93f6;
border: none;
color: white;
font-size: 16px;
border-radius: 10%;
width: 100px !important;
height: 37px !important;
display: inline-flex;
align-items: center;
justify-content: center;
cursor: pointer;
transition: background-color 0.3s;
margin: 5px;
}
#send_button:hover {
background-color: #0077c0;
}
.fixed_button_container {
padding: 0px;
margin: 0px 0 0 0px;
}
#custom_row {
width: 150% !important;
flex-wrap: nowrap !important;
}
@media only screen and (max-width: 1000px) {
.custom_row {
flex-wrap: nowrap !important;
}
}
#chatbot {
height: 100vh;
overflow-y: auto;
}
"""
theme = gr.themes.Base(
neutral_hue="blue",
text_size="sm",
spacing_size="sm",
)
# Gradio arayüzü
with gr.Blocks(css=demo_css, theme=theme) as demo:
if not os.path.exists(LOG_FILE):
with open(LOG_FILE, 'w', encoding='utf-8') as f:
f.write("--- Yeni Sohbet ---\n")
with gr.Column(elem_id="col_container"):
with gr.Accordion("", open=False, visible=False):
system_msg = gr.Textbox(value="")
new_msg = gr.Textbox(value="")
accordion_msg = gr.HTML(value="", visible=False)
chatbot = gr.Chatbot(label='Trek Asistanı', elem_id="chatbot", type="messages")
with gr.Row(elem_id="custom_row"):
inputs = gr.Textbox(
placeholder="Buraya yazın",
show_label=False,
container=False,
)
with gr.Column(elem_classes="fixed_button_container"):
send_button = gr.Button(value="Gönder", elem_id="send_button")
state = gr.State([])
with gr.Accordion("", open=False, visible=False):
top_p = gr.Slider(minimum=0, maximum=1.0, value=0.5, step=0.05, interactive=False, visible=False)
temperature = gr.Slider(minimum=0, maximum=5.0, value=0.1, step=0.1, interactive=False, visible=False)
chat_counter = gr.Number(value=0, visible=False, precision=0)
# Chatbot referansını güncelleme
chatbot_ref = []
def update_chatbot_ref(chat):
chatbot_ref[:] = chat
return chat
inputs.submit(predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter]).then(update_chatbot_ref, chatbot, chatbot).then(reset_textbox, [], [inputs])
send_button.click(predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter]).then(update_chatbot_ref, chatbot, chatbot).then(reset_textbox, [], [inputs])
# Zamanlayıcıyı başlat
scheduler_thread = threading.Thread(target=run_scheduler, args=(chatbot_ref,), daemon=True)
scheduler_thread.start()
demo.queue(max_size=10).launch(debug=True, share=True) |