File size: 4,411 Bytes
f3ff1c7
2142c80
 
f3ff1c7
2142c80
c211cfa
c5ccc94
2142c80
 
f3ff1c7
c5ccc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142c80
c5ccc94
2142c80
 
f3ff1c7
2142c80
 
f3ff1c7
b07a923
c5ccc94
 
 
 
 
 
 
b07a923
 
 
 
c5ccc94
e781c31
9721f1e
c5ccc94
 
 
 
60d0118
c5ccc94
 
 
 
 
 
 
 
 
 
2142c80
c5ccc94
f3ff1c7
 
2142c80
 
f3ff1c7
 
2142c80
 
c5ccc94
 
2142c80
 
 
 
c5ccc94
2142c80
c5ccc94
2142c80
f3ff1c7
 
2142c80
c5ccc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9819a75
c5ccc94
2142c80
c5ccc94
 
 
 
 
01cefec
365f6e4
c5ccc94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import os
import json
import requests
import xml.etree.ElementTree as ET

# OpenAI API URL and Key
API_URL = "https://api.openai.com/v1/chat/completions"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# Function to get product data from XML URL
def get_product_data(url):
    response = requests.get(url)
    root = ET.fromstring(response.content)
    products = []

    for item in root.findall('item'):
        if item.find('isOptionOfAProduct').text == '1':
            if int(item.find('stockAmount').text) > 0:
                name_words = item.find('rootlabel').text.lower().split()
                name = name_words[0]
                full_name = ' '.join(name_words)
                stockAmount = "stokta"
                price = item.find('priceWithTax').text
                item_info = (stockAmount, price)
                products.append((name, item_info, full_name))

    return products

# Load product data
url = 'https://www.alatin.com.tr/index.php?do=catalog/output&pCode=8582384479'
products = get_product_data(url)

def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    
    initial_message = [{"role": "user", "content": f"{inputs}"},]
    multi_turn_message = [
        {"role": "system", "content": "Bir önceki sohbeti unut. Vereceğin ürün bilgisi... (devamı)"}
    ]
    messages = multi_turn_message + initial_message

    input_words = [word.lower() for word in inputs.split()]

    for product_info in products:
        if product_info[0] in input_words:
            new_msg = f"{product_info[2]} {product_info[1][0]} ve fiyatı EURO {product_info[1][1]}"
            messages.append({"role": "system", "content": new_msg})
    
    for data in chatbot:
        messages.append({"role": "user", "content": data[0]})
        messages.append({"role": "assistant", "content": data[1]})
    
    messages.append({"role": "user", "content": inputs})
                
    payload = {
        "model": "gpt-4o",
        "messages": messages,
        "temperature": temperature,
        "top_p": top_p,
        "n": 1,
        "stream": True,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }

    response = requests.post(API_URL, headers=headers, json=payload, stream=True)

    history.append(inputs)
    token_counter = 0
    partial_words = ""

    for chunk in response.iter_lines():
        if chunk.decode():
            chunk = chunk.decode()
            if "content" in json.loads(chunk[6:])['choices'][0]['delta']:
                partial_words += json.loads(chunk[6:])['choices'][0]["delta"]["content"]
                if token_counter == 0:
                    history.append(" " + partial_words)
                else:
                    history[-1] = partial_words
                chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
                token_counter += 1
                yield chat, history, chat_counter

def reset_textbox():
    return gr.update(value='')

css = """
#chatbot {
    height: 450px;
    overflow: auto;
    display: flex;
    flex-direction: column-reverse;
}
.message {
    display: flex;
    padding: 8px;
    border-radius: 5px;
    margin: 5px 0;
    max-width: 60%;
}
.user {
    background-color: #DCF8C6;
    align-self: flex-end;
}
.assistant {
    background-color: #ECECEC;
    align-self: flex-start;
}
"""

theme = gr.themes.Soft(primary_hue="zinc", secondary_hue="green", neutral_hue="blue", text_size=gr.themes.sizes.text_sm)

with gr.Blocks(css=css, theme=theme) as demo:
    with gr.Column():
        chatbot = gr.Chatbot(label='Trek Asistanı', elem_id="chatbot")
        inputs = gr.Textbox(placeholder="Buraya yazın, yanıtlayalım.", show_label=False)
        state = gr.State([])
        top_p = gr.Slider(minimum=0, maximum=1.0, value=0.5, step=0.05, interactive=False, visible=False)
        temperature = gr.Slider(minimum=0, maximum=5.0, value=0.1, step=0.1, interactive=False, visible=False)
        chat_counter = gr.Number(value=0, visible=False, precision=0)

    inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])
    inputs.submit(reset_textbox, [], [inputs])

demo.queue(max_size=10, concurrency_count=10).launch(debug=True)