Spaces:
Runtime error
Runtime error
| from transformers import DetrImageProcessor, DetrForObjectDetection | |
| from PIL import Image | |
| import torch | |
| import numpy as np | |
| processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
| model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
| def detect_faults(image): | |
| inputs = processor(images=image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| target_sizes = torch.tensor([image.size[::-1]]) | |
| results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
| intrusion_detected = any(label == 1 for label in results["labels"].tolist()) | |
| # Simulated thermal detection (average red channel > 200 = overheat) | |
| red_mean = np.array(image)[:, :, 0].mean() | |
| overheating = red_mean > 200 | |
| # Simulated shade (brightness < 100 on average = dusty/shaded) | |
| brightness = np.array(image).mean() | |
| dusty = brightness < 100 | |
| return { | |
| "Intrusion Detected": intrusion_detected, | |
| "Overheating Panel": overheating, | |
| "Dust/Shade Fault": dusty | |
| } | |