|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
id2label = {0: 'anger', 1: 'anticipation', 2: 'disgust', 3: 'fear', 4: 'joy', 5: 'love', 6: 'optimism', 7: 'pessimism', 8: 'sadness', 9: 'surprise', 10: 'trust'} |
|
tokenizer = AutoTokenizer.from_pretrained("winain7788/bert-finetuned-sem_eval-english") |
|
model = AutoModelForSequenceClassification.from_pretrained("winain7788/bert-finetuned-sem_eval-english") |
|
|
|
async def get_sentiment(text): |
|
encoding = tokenizer(text, return_tensors="pt") |
|
encoding = {k: v.to(model.device) for k,v in encoding.items()} |
|
|
|
outputs = model(**encoding) |
|
logits = outputs.logits |
|
logits.shape |
|
|
|
sigmoid = torch.nn.Sigmoid() |
|
probs = sigmoid(logits.squeeze().cpu()) |
|
predictions = np.zeros(probs.shape) |
|
predictions[np.where(probs >= 0.5)] = 1 |
|
|
|
|
|
predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0] |
|
return predicted_labels |
|
|
|
demo = gr.Interface(fn=get_sentiment, inputs="text", outputs="json") |
|
|
|
demo.launch() |
|
|