File size: 9,882 Bytes
78c6e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67d5e87
 
 
78c6e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import google.generativeai as genai
import os
from io import StringIO
import json

st.set_page_config(layout="wide", page_title="Dynamic Data Dashboard")

def main():
    st.title("Dynamic Data Dashboard Generator")
    st.markdown("""
    Upload your CSV file to generate an interactive dashboard tailored to your data.
    The application uses AI to analyze your data and create relevant visualizations.
    """)
    
    # API key input with validation
    api_key_input = st.sidebar.text_input("Enter your Gemini API key for more power", type="password")
    api_key = api_key_input or os.getenv("GEMINI_API_KEY")
    
    uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
    
    if uploaded_file is not None:
        try:
            # Read and display data
            df = pd.read_csv(uploaded_file)
            with st.expander("Preview Data", expanded=True):
                st.dataframe(df.head(10))
                
            # Basic data info
            st.subheader("Data Overview")
            col1, col2 = st.columns(2)
            with col1:
                st.metric("Rows", df.shape[0])
                st.metric("Columns", df.shape[1])
            with col2:
                st.metric("Numerical Columns", len(df.select_dtypes(include=np.number).columns))
                st.metric("Categorical Columns", len(df.select_dtypes(exclude=np.number).columns))
            
            # If API key is provided, use Gemini for analysis
            if api_key:
                st.subheader("AI-Powered Dashboard")
                with st.spinner("Analyzing your data and generating visualizations..."):
                    try:
                        generate_ai_dashboard(df, api_key)
                    except Exception as e:
                        st.error(f"Error generating AI dashboard: {e}")
            
            # Standard visualizations
            st.subheader("Standard Visualizations")
            generate_standard_dashboard(df)
            
        except Exception as e:
            st.error(f"Error processing your file: {e}")

def generate_standard_dashboard(df):
    """Generate standard visualizations based on data types"""
    # Identify numerical and categorical columns
    numerical_cols = df.select_dtypes(include=np.number).columns.tolist()
    categorical_cols = df.select_dtypes(exclude=np.number).columns.tolist()
    
    # Data completeness
    st.subheader("Data Completeness")
    missing_data = pd.DataFrame({'column': df.columns, 
                                'missing_values': df.isnull().sum(),
                                'percentage': (df.isnull().sum() / len(df) * 100).round(2)})
    fig = px.bar(missing_data, x='column', y='percentage', 
                 title='Missing Values Percentage',
                 labels={'percentage': 'Missing Values (%)', 'column': 'Column'})
    st.plotly_chart(fig, use_container_width=True)
    
    # Distribution of numerical columns
    if numerical_cols:
        st.subheader("Numerical Distributions")
        selected_num_col = st.selectbox("Select a numerical column", numerical_cols)
        
        col1, col2 = st.columns(2)
        with col1:
            fig = px.histogram(df, x=selected_num_col, title=f'Distribution of {selected_num_col}')
            st.plotly_chart(fig, use_container_width=True)
        
        with col2:
            fig = px.box(df, y=selected_num_col, title=f'Box Plot of {selected_num_col}')
            st.plotly_chart(fig, use_container_width=True)
    
    # Distribution of categorical columns
    if categorical_cols:
        st.subheader("Categorical Distributions")
        selected_cat_col = st.selectbox("Select a categorical column", categorical_cols)
        
        # Limit to top 10 categories for readability
        value_counts = df[selected_cat_col].value_counts().nlargest(10)
        fig = px.bar(x=value_counts.index, y=value_counts.values, 
                     title=f'Top 10 Categories in {selected_cat_col}',
                     labels={'x': selected_cat_col, 'y': 'Count'})
        st.plotly_chart(fig, use_container_width=True)
    
    # Correlation heatmap for numerical data
    if len(numerical_cols) > 1:
        st.subheader("Correlation Between Numerical Variables")
        corr = df[numerical_cols].corr()
        fig = px.imshow(corr, text_auto=True, aspect="auto", 
                        title="Correlation Heatmap")
        st.plotly_chart(fig, use_container_width=True)
    
    # Scatter plot for exploring relationships
    if len(numerical_cols) >= 2:
        st.subheader("Explore Relationships")
        col1, col2 = st.columns(2)
        with col1:
            x_col = st.selectbox("X-axis", numerical_cols, index=0)
        with col2:
            y_col = st.selectbox("Y-axis", numerical_cols, index=min(1, len(numerical_cols)-1))
        
        color_col = None
        if categorical_cols:
            color_col = st.selectbox("Color by (optional)", ['None'] + categorical_cols)
            if color_col == 'None':
                color_col = None
        
        fig = px.scatter(df, x=x_col, y=y_col, color=color_col, 
                         title=f'{y_col} vs {x_col}',
                         opacity=0.7)
        st.plotly_chart(fig, use_container_width=True)

def generate_ai_dashboard(df, api_key):
    """Use Gemini AI to analyze data and generate dashboard recommendations"""
    # Configure Gemini
    genai.configure(api_key=api_key)
    model = genai.GenerativeModel('gemini-2.0-flash')
    
    # Generate data summary
    column_info = {col: {
        'dtype': str(df[col].dtype),
        'unique_values': int(df[col].nunique()),
        'missing_values': int(df[col].isna().sum()),
        'sample': [str(x) for x in df[col].dropna().sample(min(5, len(df))).tolist()]
    } for col in df.columns}
    
    # Prepare prompt
    full_prompt = f"""
    Analyze the following dataset and suggest visualizations that would be insightful:
    
    Dataset Summary:
    - Rows: {df.shape[0]}
    - Columns: {df.shape[1]}
    
    Column Information:
    {json.dumps(column_info, indent=2)}
    
    Please provide visualization recommendations in the following JSON format:
    {{
        "insights": [
            "Key insight about the data",
            "Another insight about the data"
        ],
        "visualizations": [
            {{
                "title": "Visualization Title",
                "description": "What this visualization shows",
                "type": "bar|line|scatter|pie|histogram|box|heatmap",
                "x_column": "column_name_for_x_axis",
                "y_column": "column_name_for_y_axis",
                "color_column": "optional_column_for_color",
                "facet_column": "optional_column_for_faceting"
            }}
        ]
    }}
    
    Return ONLY the JSON, no other text.
    """
    
    # Call Gemini API
    response = model.generate_content(
        full_prompt, 
        generation_config={"temperature": 0.3}
    )
    
    try:
        # Try to parse the response as JSON
        response_text = response.text
        
        # Clean the response if it contains markdown code blocks
        if "```json" in response_text:
            response_text = response_text.split("```json")[1].split("```")[0].strip()
        elif "```" in response_text:
            response_text = response_text.split("```")[1].split("```")[0].strip()
            
        recommendations = json.loads(response_text)
        
        # Display AI insights
        st.subheader("AI Insights")
        for insight in recommendations.get("insights", []):
            st.info(insight)
        
        # Create visualizations
        st.subheader("AI Recommended Visualizations")
        for viz in recommendations.get("visualizations", []):
            with st.expander(viz["title"], expanded=True):
                st.write(viz["description"])
                
                try:
                    x_col = viz.get("x_column")
                    y_col = viz.get("y_column")
                    color_col = viz.get("color_column")
                    viz_type = viz.get("type", "bar").lower()
                    
                    if viz_type == "bar":
                        fig = px.bar(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
                    elif viz_type == "line":
                        fig = px.line(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
                    elif viz_type == "scatter":
                        fig = px.scatter(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
                    elif viz_type == "pie":
                        fig = px.pie(df, names=x_col, values=y_col, title=viz["title"])
                    elif viz_type == "histogram":
                        fig = px.histogram(df, x=x_col, color=color_col, title=viz["title"])
                    elif viz_type == "box":
                        fig = px.box(df, y=y_col, x=x_col, color=color_col, title=viz["title"])
                    elif viz_type == "heatmap":
                        pivot_table = pd.pivot_table(df, values=y_col, index=x_col, columns=color_col, aggfunc='mean')
                        fig = px.imshow(pivot_table, title=viz["title"])
                    else:
                        fig = px.bar(df, x=x_col, y=y_col, title=viz["title"])
                    
                    st.plotly_chart(fig, use_container_width=True)
                except Exception as e:
                    st.error(f"Could not create this visualization: {e}")
    
    except Exception as e:
        st.error(f"Could not parse AI recommendations: {e}")
        st.code(response.text, language="json")

if __name__ == "__main__":
    main()