fast_dashboard / app.py
Sebbe33's picture
Update app.py
67d5e87 verified
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import google.generativeai as genai
import os
from io import StringIO
import json
st.set_page_config(layout="wide", page_title="Dynamic Data Dashboard")
def main():
st.title("Dynamic Data Dashboard Generator")
st.markdown("""
Upload your CSV file to generate an interactive dashboard tailored to your data.
The application uses AI to analyze your data and create relevant visualizations.
""")
# API key input with validation
api_key_input = st.sidebar.text_input("Enter your Gemini API key for more power", type="password")
api_key = api_key_input or os.getenv("GEMINI_API_KEY")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
# Read and display data
df = pd.read_csv(uploaded_file)
with st.expander("Preview Data", expanded=True):
st.dataframe(df.head(10))
# Basic data info
st.subheader("Data Overview")
col1, col2 = st.columns(2)
with col1:
st.metric("Rows", df.shape[0])
st.metric("Columns", df.shape[1])
with col2:
st.metric("Numerical Columns", len(df.select_dtypes(include=np.number).columns))
st.metric("Categorical Columns", len(df.select_dtypes(exclude=np.number).columns))
# If API key is provided, use Gemini for analysis
if api_key:
st.subheader("AI-Powered Dashboard")
with st.spinner("Analyzing your data and generating visualizations..."):
try:
generate_ai_dashboard(df, api_key)
except Exception as e:
st.error(f"Error generating AI dashboard: {e}")
# Standard visualizations
st.subheader("Standard Visualizations")
generate_standard_dashboard(df)
except Exception as e:
st.error(f"Error processing your file: {e}")
def generate_standard_dashboard(df):
"""Generate standard visualizations based on data types"""
# Identify numerical and categorical columns
numerical_cols = df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = df.select_dtypes(exclude=np.number).columns.tolist()
# Data completeness
st.subheader("Data Completeness")
missing_data = pd.DataFrame({'column': df.columns,
'missing_values': df.isnull().sum(),
'percentage': (df.isnull().sum() / len(df) * 100).round(2)})
fig = px.bar(missing_data, x='column', y='percentage',
title='Missing Values Percentage',
labels={'percentage': 'Missing Values (%)', 'column': 'Column'})
st.plotly_chart(fig, use_container_width=True)
# Distribution of numerical columns
if numerical_cols:
st.subheader("Numerical Distributions")
selected_num_col = st.selectbox("Select a numerical column", numerical_cols)
col1, col2 = st.columns(2)
with col1:
fig = px.histogram(df, x=selected_num_col, title=f'Distribution of {selected_num_col}')
st.plotly_chart(fig, use_container_width=True)
with col2:
fig = px.box(df, y=selected_num_col, title=f'Box Plot of {selected_num_col}')
st.plotly_chart(fig, use_container_width=True)
# Distribution of categorical columns
if categorical_cols:
st.subheader("Categorical Distributions")
selected_cat_col = st.selectbox("Select a categorical column", categorical_cols)
# Limit to top 10 categories for readability
value_counts = df[selected_cat_col].value_counts().nlargest(10)
fig = px.bar(x=value_counts.index, y=value_counts.values,
title=f'Top 10 Categories in {selected_cat_col}',
labels={'x': selected_cat_col, 'y': 'Count'})
st.plotly_chart(fig, use_container_width=True)
# Correlation heatmap for numerical data
if len(numerical_cols) > 1:
st.subheader("Correlation Between Numerical Variables")
corr = df[numerical_cols].corr()
fig = px.imshow(corr, text_auto=True, aspect="auto",
title="Correlation Heatmap")
st.plotly_chart(fig, use_container_width=True)
# Scatter plot for exploring relationships
if len(numerical_cols) >= 2:
st.subheader("Explore Relationships")
col1, col2 = st.columns(2)
with col1:
x_col = st.selectbox("X-axis", numerical_cols, index=0)
with col2:
y_col = st.selectbox("Y-axis", numerical_cols, index=min(1, len(numerical_cols)-1))
color_col = None
if categorical_cols:
color_col = st.selectbox("Color by (optional)", ['None'] + categorical_cols)
if color_col == 'None':
color_col = None
fig = px.scatter(df, x=x_col, y=y_col, color=color_col,
title=f'{y_col} vs {x_col}',
opacity=0.7)
st.plotly_chart(fig, use_container_width=True)
def generate_ai_dashboard(df, api_key):
"""Use Gemini AI to analyze data and generate dashboard recommendations"""
# Configure Gemini
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.0-flash')
# Generate data summary
column_info = {col: {
'dtype': str(df[col].dtype),
'unique_values': int(df[col].nunique()),
'missing_values': int(df[col].isna().sum()),
'sample': [str(x) for x in df[col].dropna().sample(min(5, len(df))).tolist()]
} for col in df.columns}
# Prepare prompt
full_prompt = f"""
Analyze the following dataset and suggest visualizations that would be insightful:
Dataset Summary:
- Rows: {df.shape[0]}
- Columns: {df.shape[1]}
Column Information:
{json.dumps(column_info, indent=2)}
Please provide visualization recommendations in the following JSON format:
{{
"insights": [
"Key insight about the data",
"Another insight about the data"
],
"visualizations": [
{{
"title": "Visualization Title",
"description": "What this visualization shows",
"type": "bar|line|scatter|pie|histogram|box|heatmap",
"x_column": "column_name_for_x_axis",
"y_column": "column_name_for_y_axis",
"color_column": "optional_column_for_color",
"facet_column": "optional_column_for_faceting"
}}
]
}}
Return ONLY the JSON, no other text.
"""
# Call Gemini API
response = model.generate_content(
full_prompt,
generation_config={"temperature": 0.3}
)
try:
# Try to parse the response as JSON
response_text = response.text
# Clean the response if it contains markdown code blocks
if "```json" in response_text:
response_text = response_text.split("```json")[1].split("```")[0].strip()
elif "```" in response_text:
response_text = response_text.split("```")[1].split("```")[0].strip()
recommendations = json.loads(response_text)
# Display AI insights
st.subheader("AI Insights")
for insight in recommendations.get("insights", []):
st.info(insight)
# Create visualizations
st.subheader("AI Recommended Visualizations")
for viz in recommendations.get("visualizations", []):
with st.expander(viz["title"], expanded=True):
st.write(viz["description"])
try:
x_col = viz.get("x_column")
y_col = viz.get("y_column")
color_col = viz.get("color_column")
viz_type = viz.get("type", "bar").lower()
if viz_type == "bar":
fig = px.bar(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
elif viz_type == "line":
fig = px.line(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
elif viz_type == "scatter":
fig = px.scatter(df, x=x_col, y=y_col, color=color_col, title=viz["title"])
elif viz_type == "pie":
fig = px.pie(df, names=x_col, values=y_col, title=viz["title"])
elif viz_type == "histogram":
fig = px.histogram(df, x=x_col, color=color_col, title=viz["title"])
elif viz_type == "box":
fig = px.box(df, y=y_col, x=x_col, color=color_col, title=viz["title"])
elif viz_type == "heatmap":
pivot_table = pd.pivot_table(df, values=y_col, index=x_col, columns=color_col, aggfunc='mean')
fig = px.imshow(pivot_table, title=viz["title"])
else:
fig = px.bar(df, x=x_col, y=y_col, title=viz["title"])
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.error(f"Could not create this visualization: {e}")
except Exception as e:
st.error(f"Could not parse AI recommendations: {e}")
st.code(response.text, language="json")
if __name__ == "__main__":
main()