Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,410 Bytes
c28f525 011baea c28f525 011baea c28f525 011baea c28f525 011baea c28f525 011baea c28f525 011baea c28f525 011baea c28f525 011baea c28f525 011baea c28f525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 |
# Acknowledgement: This demo code is adapted from the original Hugging Face Space "ContextCite"
# (https://huggingface.co/spaces/contextcite/context-cite).
import os
from enum import Enum
from dataclasses import dataclass
from typing import Dict, List, Any, Optional
import gradio as gr
import numpy as np
import spaces
import nltk
import base64
import traceback
from src.utils import split_into_sentences as split_into_sentences_utils
# --- AttnTrace imports (from app_full.py) ---
from src.models import create_model
from src.attribution import AttnTraceAttribution
from src.prompts import wrap_prompt
from gradio_highlightedtextbox import HighlightedTextbox
from examples import run_example_1, run_example_2, run_example_3, run_example_4, run_example_5, run_example_6
from functools import partial
os.makedirs("/home/user/nltk_data", exist_ok=True)
# Download punkt to a known path
nltk.download("punkt", download_dir="/home/user/nltk_data")
# Tell nltk where to find it
nltk.data.path.append("/home/user/nltk_data")
from nltk.tokenize import sent_tokenize
# Load original app constants
APP_TITLE = '<div class="app-title"><span class="brand">AttnTrace: </span><span class="subtitle">Attention-based Context Traceback for Long-Context LLMs</span></div>'
APP_DESCRIPTION = """AttnTrace traces a model's generated statements back to specific parts of the context using attention-based traceback. Try it out with Meta-Llama-3.1-8B-Instruct here! See the [[paper](https://arxiv.org/abs/2506.04202)] and [[code](https://github.com/Wang-Yanting/TracLLM-Kit)] for more!
Maintained by the AttnTrace team."""
# NEW_TEXT = """Long-context large language models (LLMs), such as Gemini-2.5-Pro and Claude-Sonnet-4, are increasingly used to empower advanced AI systems, including retrieval-augmented generation (RAG) pipelines and autonomous agents. In these systems, an LLM receives an instruction along with a contextβoften consisting of texts retrieved from a knowledge database or memoryβand generates a response that is contextually grounded by following the instruction. Recent studies have designed solutions to trace back to a subset of texts in the context that contributes most to the response generated by the LLM. These solutions have numerous real-world applications, including performing post-attack forensic analysis and improving the interpretability and trustworthiness of LLM outputs. While significant efforts have been made, state-of-the-art solutions such as TracLLM often lead to a high computation cost, e.g., it takes TracLLM hundreds of seconds to perform traceback for a single response-context pair. In this work, we propose {\name}, a new context traceback method based on the attention weights produced by an LLM for a prompt. To effectively utilize attention weights, we introduce two techniques designed to enhance the effectiveness of {\name}, and we provide theoretical insights for our design choice. %Moreover, we perform both theoretical analysis and empirical evaluation to demonstrate their effectiveness.
# We also perform a systematic evaluation for {\name}. The results demonstrate that {\name} is more accurate and efficient than existing state-of-the-art context traceback methods. We also show {\name} can improve state-of-the-art methods in detecting prompt injection under long contexts through the attribution-before-detection paradigm. As a real-world application, we demonstrate that {\name} can effectively pinpoint injected instructions in a paper designed to manipulate LLM-generated reviews.
# The code and data will be open-sourced. """
# EDIT_TEXT = "Feel free to edit!"
GENERATE_CONTEXT_TOO_LONG_TEXT = (
'<em style="color: red;">Context is too long for the current model.</em>'
)
ATTRIBUTE_CONTEXT_TOO_LONG_TEXT = '<em style="color: red;">Context is too long for the current traceback method.</em>'
CONTEXT_LINES = 20
CONTEXT_MAX_LINES = 40
SELECTION_DEFAULT_TEXT = "Click on a sentence in the response to traceback!"
SELECTION_DEFAULT_VALUE = [(SELECTION_DEFAULT_TEXT, None)]
SOURCES_INFO = 'These are the texts that contribute most to the response.'
# SOURCES_IN_CONTEXT_INFO = (
# "This shows the important sentences highlighted within their surrounding context from the text above. Colors indicate ranking: Red (1st), Orange (2nd), Golden (3rd), Yellow (4th-5th), Light (6th+)."
# )
MODEL_PATHS = [
"meta-llama/Meta-Llama-3.1-8B-Instruct",
]
MAX_TOKENS = {
"meta-llama/Meta-Llama-3.1-8B-Instruct": 131072,
}
DEFAULT_MODEL_PATH = MODEL_PATHS[0]
EXPLANATION_LEVELS = ["sentence", "paragraph", "text segment"]
DEFAULT_EXPLANATION_LEVEL = "sentence"
class WorkflowState(Enum):
WAITING_TO_GENERATE = 0
WAITING_TO_SELECT = 1
READY_TO_ATTRIBUTE = 2
@dataclass
class State:
workflow_state: WorkflowState
context: str
query: str
response: str
start_index: int
end_index: int
scores: np.ndarray
answer: str
highlighted_context: str
full_response: str
explained_response_part: str
last_query_used: str = ""
# --- Dynamic Model and Attribution Management ---
current_llm = None
current_attr = None
current_model_path = None
current_explanation_level = None
current_api_key = None
def initialize_model_and_attr():
"""Initialize model and attribution with default configuration"""
global current_llm, current_attr, current_model_path, current_explanation_level, current_api_key
try:
# Check if we need to reinitialize the model
need_model_update = (current_llm is None or
current_model_path != DEFAULT_MODEL_PATH or
current_api_key != os.getenv("HF_TOKEN"))
# Check if we need to update attribution
need_attr_update = (current_attr is None or
current_explanation_level != DEFAULT_EXPLANATION_LEVEL or
need_model_update)
if need_model_update:
print(f"Initializing model: {DEFAULT_MODEL_PATH}")
effective_api_key = os.getenv("HF_TOKEN")
current_llm = create_model(model_path=DEFAULT_MODEL_PATH, api_key=effective_api_key, device="cuda")
current_model_path = DEFAULT_MODEL_PATH
current_api_key = effective_api_key
if need_attr_update:
print(f"Initializing context traceback with explanation level: {DEFAULT_EXPLANATION_LEVEL}")
current_attr = AttnTraceAttribution(
current_llm,
explanation_level=DEFAULT_EXPLANATION_LEVEL,
K=3,
q=0.4,
B=30
)
current_explanation_level = DEFAULT_EXPLANATION_LEVEL
return current_llm, current_attr, None
except Exception as e:
error_msg = f"Error initializing model/traceback: {str(e)}"
print(error_msg)
traceback.print_exc()
return None, None, error_msg
# Remove immediate initialization - let lazy initialization work
llm, attr, error_msg = initialize_model_and_attr() # Commented out to avoid main-thread CUDA initialization
# Images replaced with CSS textures and gradients - no longer needed
def clear_state():
return State(
workflow_state=WorkflowState.WAITING_TO_GENERATE,
context="",
query="",
response="",
start_index=0,
end_index=0,
scores=np.array([]),
answer="",
highlighted_context="",
full_response="",
explained_response_part="",
last_query_used=""
)
def load_an_example(example_loader_func, state: State):
context, query = example_loader_func()
# Update both UI and state
state.context = context
state.query = query
state.workflow_state = WorkflowState.WAITING_TO_GENERATE
# Clear previous results
state.response = ""
state.answer = ""
state.full_response = ""
state.explained_response_part = ""
print(f"Loaded example - Context: {len(context)} chars, Query: {query[:50]}...")
return (
context, # basic_context_box
query, # basic_query_box
state,
"", # response_input_box - clear it
gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible
gr.update(selected=0) # basic_context_tabs - switch to first tab
)
def get_max_tokens(model_path: str):
return MAX_TOKENS.get(model_path, 2048) # Default fallback
def get_scroll_js_code(elem_id):
return f"""
function scrollToElement() {{
const element = document.getElementById("{elem_id}");
element.scrollIntoView({{ behavior: "smooth", block: "nearest" }});
}}
"""
def basic_update(context: str, query: str, state: State):
state.context = context
state.query = query
state.workflow_state = WorkflowState.WAITING_TO_GENERATE
return (
gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible
gr.update(selected=0), # basic_context_tabs - switch to first tab
state,
)
@spaces.GPU
def generate_model_response(state: State):
# Validate inputs first with debug info
print(f"Validation - Context length: {len(state.context) if state.context else 0}")
print(f"Validation - Query: {state.query[:50] if state.query else 'empty'}...")
if not state.context or not state.context.strip():
print("β Validation failed: No context")
return state, gr.update(value=[("β Please enter context before generating response! If you just changed configuration, try reloading an example.", None)], visible=True)
if not state.query or not state.query.strip():
print("β Validation failed: No query")
return state, gr.update(value=[("β Please enter a query before generating response! If you just changed configuration, try reloading an example.", None)], visible=True)
# Initialize model and attribution with default configuration
print(f"π§ Generating response with explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
#llm, attr, error_msg = initialize_model_and_attr()
if llm is None or attr is None:
error_text = error_msg if error_msg else "Model initialization failed!"
return state, gr.update(value=[(f"β {error_text}", None)], visible=True)
prompt = wrap_prompt(state.query, [state.context])
print(f"Generated prompt for {DEFAULT_MODEL_PATH}: {prompt[:200]}...") # Debug log
# Check context length
if len(prompt.split()) > get_max_tokens(DEFAULT_MODEL_PATH) - 512:
return state, gr.update(value=[(GENERATE_CONTEXT_TOO_LONG_TEXT, None)], visible=True)
answer = llm.query(prompt)
print(f"Model response: {answer}") # Debug log
state.response = answer
state.answer = answer
state.full_response = answer
state.workflow_state = WorkflowState.WAITING_TO_SELECT
return state, gr.update(visible=False)
def split_into_sentences(text: str):
def rule_based_split(text):
sentences = []
start = 0
for i, char in enumerate(text):
if char in ".?γ":
if i + 1 == len(text) or text[i + 1] == " ":
sentences.append(text[start:i + 1].strip())
start = i + 1
if start < len(text):
sentences.append(text[start:].strip())
return sentences
lines = text.splitlines()
sentences = []
for line in lines:
#sentences.extend(sent_tokenize(line))
sentences.extend(rule_based_split(line))
separators = []
cur_start = 0
for sentence in sentences:
cur_end = text.find(sentence, cur_start)
separators.append(text[cur_start:cur_end])
cur_start = cur_end + len(sentence)
return sentences, separators
def basic_highlight_response(
response: str, selected_index: int, num_sources: int = -1
):
sentences, separators = split_into_sentences(response)
ht = []
if num_sources == -1:
citations_text = "Traceback!"
elif num_sources == 0:
citations_text = "No important text!"
else:
citations_text = f"[{','.join(str(i) for i in range(1, num_sources + 1))}]"
for i, (sentence, separator) in enumerate(zip(sentences, separators)):
label = citations_text if i == selected_index else "Traceback"
# Hack to ignore punctuation
if len(sentence) >= 4:
ht.append((separator + sentence, label))
else:
ht.append((separator + sentence, None))
color_map = {"Click to cite!": "blue", citations_text: "yellow"}
return gr.HighlightedText(value=ht, color_map=color_map)
def basic_highlight_response_with_visibility(
response: str, selected_index: int, num_sources: int = -1, visible: bool = True
):
"""Version of basic_highlight_response that also sets visibility"""
sentences, separators = split_into_sentences(response)
ht = []
if num_sources == -1:
citations_text = "Traceback!"
elif num_sources == 0:
citations_text = "No important text!"
else:
citations_text = f"[{','.join(str(i) for i in range(1, num_sources + 1))}]"
for i, (sentence, separator) in enumerate(zip(sentences, separators)):
label = citations_text if i == selected_index else "Traceback"
# Hack to ignore punctuation
if len(sentence) >= 4:
ht.append((separator + sentence, label))
else:
ht.append((separator + sentence, None))
color_map = {"Click to cite!": "blue", citations_text: "yellow"}
return gr.update(value=ht, color_map=color_map, visible=visible)
def basic_update_highlighted_response(evt: gr.SelectData, state: State):
response_update = basic_highlight_response(state.response, evt.index)
return response_update, state
def unified_response_handler(response_text: str, state: State):
"""Handle both LLM generation and manual input based on whether text is provided"""
# Check if instruction has changed from what was used to generate current response
instruction_changed = hasattr(state, 'last_query_used') and state.last_query_used != state.query
# If response_text is empty, whitespace, or instruction changed, generate from LLM
if not response_text or not response_text.strip() or instruction_changed:
if instruction_changed:
print("π Instruction changed, generating new response from LLM...")
else:
print("π€ Generating response from LLM...")
# Validate inputs first
if not state.context or not state.context.strip():
return (
state,
response_text, # Keep current text box content
gr.update(visible=False), # Keep response box hidden
gr.update(value=[("β Please enter context before generating response!", None)], visible=True)
)
if not state.query or not state.query.strip():
return (
state,
response_text, # Keep current text box content
gr.update(visible=False), # Keep response box hidden
gr.update(value=[("β Please enter a query before generating response!", None)], visible=True)
)
# Initialize model and generate response
#llm, attr, error_msg = initialize_model_and_attr()
if llm is None:
error_text = error_msg if error_msg else "Model initialization failed!"
return (
state,
response_text, # Keep current text box content
gr.update(visible=False), # Keep response box hidden
gr.update(value=[(f"β {error_text}", None)], visible=True)
)
prompt = wrap_prompt(state.query, [state.context])
# Check context length
if len(prompt.split()) > get_max_tokens(DEFAULT_MODEL_PATH) - 512:
return (
state,
response_text, # Keep current text box content
gr.update(visible=False), # Keep response box hidden
gr.update(value=[(GENERATE_CONTEXT_TOO_LONG_TEXT, None)], visible=True)
)
# Generate response
answer = llm.query(prompt)
print(f"Generated response: {answer[:100]}...")
# Update state and UI
state.response = answer
state.answer = answer
state.full_response = answer
state.last_query_used = state.query # Track which query was used for this response
state.workflow_state = WorkflowState.WAITING_TO_SELECT
# Create highlighted response and show it
response_update = basic_highlight_response_with_visibility(state.response, -1, visible=True)
return (
state,
answer, # Put generated response in text box
response_update, # Update clickable response content
gr.update(visible=False) # Hide error box
)
else:
# Use provided text as manual response
print("βοΈ Using manual response...")
manual_text = response_text.strip()
# Update state with manual response
state.response = manual_text
state.answer = manual_text
state.full_response = manual_text
state.last_query_used = state.query # Track current query for this response
state.workflow_state = WorkflowState.WAITING_TO_SELECT
# Create highlighted response for selection
response_update = basic_highlight_response_with_visibility(state.response, -1, visible=True)
return (
state,
manual_text, # Keep text in text box
response_update, # Update clickable response content
gr.update(visible=False) # Hide error box
)
def get_color_by_rank(rank, total_items):
"""Get color based purely on rank position for better visual distinction"""
if total_items == 0:
return "#F0F0F0", "rgba(240, 240, 240, 0.8)"
# Pure ranking-based color assignment for clear visual hierarchy
if rank == 1: # Highest importance - Strong Red
bg_color = "#FF4444" # Bright red
rgba_color = "rgba(255, 68, 68, 0.9)"
elif rank == 2: # Second highest - Orange
bg_color = "#FF8C42" # Bright orange
rgba_color = "rgba(255, 140, 66, 0.8)"
elif rank == 3: # Third highest - Golden Yellow
bg_color = "#FFD93D" # Golden yellow
rgba_color = "rgba(255, 217, 61, 0.8)"
elif rank <= 5: # 4th-5th - Light Yellow
bg_color = "#FFF280" # Standard yellow
rgba_color = "rgba(255, 242, 128, 0.7)"
else: # Lower importance - Very Light Yellow
bg_color = "#FFF9C4" # Very light yellow
rgba_color = "rgba(255, 249, 196, 0.6)"
return bg_color, rgba_color
@spaces.GPU
def basic_get_scores_and_sources_full_response(state: State):
"""Traceback the entire response instead of a selected segment"""
# Use the entire response as the explained part
state.explained_response_part = state.full_response
# Attribution using default configuration
#_, attr, error_msg = initialize_model_and_attr()
if attr is None:
error_text = error_msg if error_msg else "Traceback initialization failed!"
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[(f"β {error_text}", None)], visible=True),
state,
)
try:
# Validate attribution inputs
if not state.context or not state.context.strip():
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No context available for traceback!", None)], visible=True),
state,
)
if not state.query or not state.query.strip():
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No query available for traceback!", None)], visible=True),
state,
)
if not state.full_response or not state.full_response.strip():
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No response available for traceback!", None)], visible=True),
state,
)
print(f"start full response traceback with explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
print(f"context length: {len(state.context)}, query: {state.query[:100]}...")
print(f"full response: {state.full_response[:100]}...")
print(f"tracing entire response (length: {len(state.full_response)} chars)")
texts, important_ids, importance_scores, _, _ = attr.attribute(
state.query, [state.context], state.full_response, state.full_response
)
print("end full response traceback")
print(f"explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
print(f"texts count: {len(texts)} (how context was segmented)")
if len(texts) > 0:
print(f"sample text segments: {[text[:50] + '...' if len(text) > 50 else text for text in texts[:3]]}")
print(f"important_ids: {important_ids}")
print("importance_scores: ", importance_scores)
if not importance_scores:
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No traceback scores generated for full response!", None)], visible=True),
state,
)
state.scores = np.array(importance_scores)
# Highlighted sources with ranking-based colors
highlighted_text = []
sorted_indices = np.argsort(state.scores)[::-1]
total_sources = len(important_ids)
for rank, i in enumerate(sorted_indices):
source_text = texts[important_ids[i]]
_ = get_color_by_rank(rank + 1, total_sources)
highlighted_text.append(
(
source_text,
f"rank_{rank+1}",
)
)
# In-context highlights with ranking-based colors - show ALL text
in_context_highlighted_text = []
ranks = {important_ids[i]: rank for rank, i in enumerate(sorted_indices)}
for i in range(len(texts)):
source_text = texts[i]
# Skip or don't highlight segments that are only newlines or whitespace
if source_text.strip() == "":
# For whitespace-only segments, add them without highlighting
in_context_highlighted_text.append((source_text, None))
elif i in important_ids:
# Only highlight if the segment has actual content (not just newlines)
if source_text.strip(): # Has non-whitespace content
rank = ranks[i] + 1
# Split the segment to separate leading/trailing newlines from content
# This prevents newlines from being highlighted
leading_whitespace = ""
trailing_whitespace = ""
content = source_text
# Extract leading newlines/whitespace
while content and content[0] in ['\n', '\r', '\t', ' ']:
leading_whitespace += content[0]
content = content[1:]
# Extract trailing newlines/whitespace
while content and content[-1] in ['\n', '\r', '\t', ' ']:
trailing_whitespace = content[-1] + trailing_whitespace
content = content[:-1]
# Add the parts separately: whitespace unhighlighted, content highlighted
if leading_whitespace:
in_context_highlighted_text.append((leading_whitespace, None))
if content:
in_context_highlighted_text.append((content, f"rank_{rank}"))
if trailing_whitespace:
in_context_highlighted_text.append((trailing_whitespace, None))
else:
# Even if marked as important, don't highlight whitespace-only segments
in_context_highlighted_text.append((source_text, None))
else:
# Add unhighlighted text for non-important segments
in_context_highlighted_text.append((source_text, None))
# Enhanced color map with ranking-based colors
color_map = {}
for rank in range(len(important_ids)):
_, rgba_color = get_color_by_rank(rank + 1, total_sources)
color_map[f"rank_{rank+1}"] = rgba_color
dummy_update = gr.update(
value=f"AttnTrace_{state.response}_{state.start_index}_{state.end_index}"
)
attribute_error_update = gr.update(visible=False)
# Combine sources and highlighted context into a single display
# Sources at the top
combined_display = []
# Add sources header (no highlighting for UI elements)
combined_display.append(("βββ FULL RESPONSE TRACEBACK RESULTS βββ\n", None))
combined_display.append(("These are the text segments that contribute most to the entire response:\n\n", None))
# Add sources using available data
for rank, i in enumerate(sorted_indices):
if i < len(important_ids):
source_text = texts[important_ids[i]]
# Strip leading/trailing whitespace from source text to avoid highlighting newlines
clean_source_text = source_text.strip()
if clean_source_text: # Only add if there's actual content
# Add the source text with highlighting, then add spacing without highlighting
combined_display.append((clean_source_text, f"rank_{rank+1}"))
combined_display.append(("\n\n", None))
# Add separator (no highlighting for UI elements)
combined_display.append(("\n" + "β"*50 + "\n", None))
combined_display.append(("FULL CONTEXT WITH HIGHLIGHTS\n", None))
combined_display.append(("Scroll down to see the complete context with important segments highlighted:\n\n", None))
# Add highlighted context using in_context_highlighted_text
combined_display.extend(in_context_highlighted_text)
# Use only the ranking colors (no highlighting for UI elements)
enhanced_color_map = color_map.copy()
combined_sources_update = HighlightedTextbox(
value=combined_display, color_map=enhanced_color_map, visible=True
)
# Switch to the highlighted context tab and show results
basic_context_tabs_update = gr.update(selected=1)
basic_sources_in_context_tab_update = gr.update(visible=True)
return (
combined_sources_update,
basic_context_tabs_update,
basic_sources_in_context_tab_update,
dummy_update,
attribute_error_update,
state,
)
except Exception as e:
traceback.print_exc()
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[(f"β Error: {str(e)}", None)], visible=True),
state,
)
def basic_get_scores_and_sources(
evt: gr.SelectData,
highlighted_response: List[Dict[str, str]],
state: State,
):
# Get the selected sentence
print("highlighted_response: ", highlighted_response[evt.index])
selected_text = highlighted_response[evt.index]['token']
state.explained_response_part = selected_text
# Attribution using default configuration
#_, attr, error_msg = initialize_model_and_attr()
if attr is None:
error_text = error_msg if error_msg else "Traceback initialization failed!"
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[(f"β {error_text}", None)], visible=True),
state,
)
try:
# Validate attribution inputs
if not state.context or not state.context.strip():
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No context available for traceback!", None)], visible=True),
state,
)
if not state.query or not state.query.strip():
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No query available for traceback!", None)], visible=True),
state,
)
if not state.full_response or not state.full_response.strip():
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No response available for traceback!", None)], visible=True),
state,
)
print(f"start traceback with explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
print(f"context length: {len(state.context)}, query: {state.query[:100]}...")
print(f"response: {state.full_response[:100]}...")
print(f"selected part: {state.explained_response_part[:100]}...")
texts, important_ids, importance_scores, _, _ = attr.attribute(
state.query, [state.context], state.full_response, state.explained_response_part
)
print("end traceback")
print(f"explanation_level: {DEFAULT_EXPLANATION_LEVEL}")
print(f"texts count: {len(texts)} (how context was segmented)")
if len(texts) > 0:
print(f"sample text segments: {[text[:50] + '...' if len(text) > 50 else text for text in texts[:3]]}")
print(f"important_ids: {important_ids}")
print("importance_scores: ", importance_scores)
if not importance_scores:
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[("β No traceback scores generated! Try a different text segment.", None)], visible=True),
state,
)
state.scores = np.array(importance_scores)
# Highlighted sources with ranking-based colors
highlighted_text = []
sorted_indices = np.argsort(state.scores)[::-1]
total_sources = len(important_ids)
for rank, i in enumerate(sorted_indices):
source_text = texts[important_ids[i]]
_ = get_color_by_rank(rank + 1, total_sources)
highlighted_text.append(
(
source_text,
f"rank_{rank+1}",
)
)
# In-context highlights with ranking-based colors - show ALL text
in_context_highlighted_text = []
ranks = {important_ids[i]: rank for rank, i in enumerate(sorted_indices)}
for i in range(len(texts)):
source_text = texts[i]
# Skip or don't highlight segments that are only newlines or whitespace
if source_text.strip() == "":
# For whitespace-only segments, add them without highlighting
in_context_highlighted_text.append((source_text, None))
elif i in important_ids:
# Only highlight if the segment has actual content (not just newlines)
if source_text.strip(): # Has non-whitespace content
rank = ranks[i] + 1
# Split the segment to separate leading/trailing newlines from content
# This prevents newlines from being highlighted
leading_whitespace = ""
trailing_whitespace = ""
content = source_text
# Extract leading newlines/whitespace
while content and content[0] in ['\n', '\r', '\t', ' ']:
leading_whitespace += content[0]
content = content[1:]
# Extract trailing newlines/whitespace
while content and content[-1] in ['\n', '\r', '\t', ' ']:
trailing_whitespace = content[-1] + trailing_whitespace
content = content[:-1]
# Add the parts separately: whitespace unhighlighted, content highlighted
if leading_whitespace:
in_context_highlighted_text.append((leading_whitespace, None))
if content:
in_context_highlighted_text.append((content, f"rank_{rank}"))
if trailing_whitespace:
in_context_highlighted_text.append((trailing_whitespace, None))
else:
# Even if marked as important, don't highlight whitespace-only segments
in_context_highlighted_text.append((source_text, None))
else:
# Add unhighlighted text for non-important segments
in_context_highlighted_text.append((source_text, None))
# Enhanced color map with ranking-based colors
color_map = {}
for rank in range(len(important_ids)):
_, rgba_color = get_color_by_rank(rank + 1, total_sources)
color_map[f"rank_{rank+1}"] = rgba_color
dummy_update = gr.update(
value=f"AttnTrace_{state.response}_{state.start_index}_{state.end_index}"
)
attribute_error_update = gr.update(visible=False)
# Combine sources and highlighted context into a single display
# Sources at the top
combined_display = []
# Add sources header (no highlighting for UI elements)
combined_display.append(("βββ TRACEBACK RESULTS βββ\n", None))
combined_display.append(("These are the text segments that contribute most to the response:\n\n", None))
# Add sources using available data
for rank, i in enumerate(sorted_indices):
if i < len(important_ids):
source_text = texts[important_ids[i]]
# Strip leading/trailing whitespace from source text to avoid highlighting newlines
clean_source_text = source_text.strip()
if clean_source_text: # Only add if there's actual content
# Add the source text with highlighting, then add spacing without highlighting
combined_display.append((clean_source_text, f"rank_{rank+1}"))
combined_display.append(("\n\n", None))
# Add separator (no highlighting for UI elements)
combined_display.append(("\n" + "β"*50 + "\n", None))
combined_display.append(("FULL CONTEXT WITH HIGHLIGHTS\n", None))
combined_display.append(("Scroll down to see the complete context with important segments highlighted:\n\n", None))
# Add highlighted context using in_context_highlighted_text
combined_display.extend(in_context_highlighted_text)
# Use only the ranking colors (no highlighting for UI elements)
enhanced_color_map = color_map.copy()
combined_sources_update = HighlightedTextbox(
value=combined_display, color_map=enhanced_color_map, visible=True
)
# Switch to the highlighted context tab and show results
basic_context_tabs_update = gr.update(selected=1)
basic_sources_in_context_tab_update = gr.update(visible=True)
return (
combined_sources_update,
basic_context_tabs_update,
basic_sources_in_context_tab_update,
dummy_update,
attribute_error_update,
state,
)
except Exception as e:
traceback.print_exc()
return (
gr.update(value=[("", None)], visible=False),
gr.update(selected=0),
gr.update(visible=False),
gr.update(value=""),
gr.update(value=[(f"β Error: {str(e)}", None)], visible=True),
state,
)
def load_custom_css():
"""Load CSS from external file"""
try:
with open("assets/app_styles.css", "r") as f:
css_content = f.read()
return css_content
except FileNotFoundError:
print("Warning: CSS file not found, using minimal CSS")
return ""
except Exception as e:
print(f"Error loading CSS: {e}")
return ""
# Load CSS from external file
custom_css = load_custom_css()
theme = gr.themes.Citrus(
text_size="lg",
spacing_size="md",
)
with gr.Blocks(theme=theme, css=custom_css) as demo:
gr.Markdown(f"# {APP_TITLE}")
gr.Markdown(APP_DESCRIPTION, elem_classes="app-description")
# gr.Markdown(NEW_TEXT, elem_classes="app-description-2")
gr.Markdown("""
<div style="font-size: 18px;">
AttnTrace is an efficient context traceback method for long contexts (e.g., full papers). It is over 15Γ faster than the state-of-the-art context traceback method TracLLM. Compared to previous attention-based approaches, AttnTrace is more accurate, reliable, and memory-efficient.
""", elem_classes="feature-highlights")
# Feature highlights
gr.Markdown("""
<div style="font-size: 18px;">
AttnTrace can be used in many real-world applications, such as tracing back to:
- π prompt injection instructions that manipulate LLM-generated paper reviews.
- π» malicious comment & code hiding in the codebase that misleads the AI coding assistant.
- π€ malicious instructions that mislead the action of the LLM agent.
- π source texts in the context from an AI summary.
- π evidence that supports the LLM-generated answer for a question.
- β misinformation (corrupted knowledge) that manipulates LLM output for a question.
- And a lot more...
</div>
""", elem_classes="feature-highlights")
# Example buttons with topic-relevant images - moved here for better positioning
gr.Markdown("### π Try These Examples!", elem_classes="example-title")
with gr.Row(elem_classes=["example-button-container"]):
with gr.Column(scale=1):
example_1_btn = gr.Button(
"π Prompt Injection Attacks in AI Paper Review",
elem_classes=["example-button", "example-paper"],
elem_id="example_1_button",
scale=None,
size="sm"
)
with gr.Column(scale=1):
example_2_btn = gr.Button(
"π» Malicious Comments & Code in Codebase",
elem_classes=["example-button", "example-movie"],
elem_id="example_2_button"
)
with gr.Column(scale=1):
example_3_btn = gr.Button(
"π€ Malicious Instructions Misleading the LLM Agent",
elem_classes=["example-button", "example-code"],
elem_id="example_3_button"
)
with gr.Row(elem_classes=["example-button-container"]):
with gr.Column(scale=1):
example_4_btn = gr.Button(
"π Source Texts for an AI Summary",
elem_classes=["example-button", "example-paper-alt"],
elem_id="example_4_button"
)
with gr.Column(scale=1):
example_5_btn = gr.Button(
"π Evidence that Support Question Answering",
elem_classes=["example-button", "example-movie-alt"],
elem_id="example_5_button"
)
with gr.Column(scale=1):
example_6_btn = gr.Button(
"β Misinformation (Corrupted Knowledge) in Question Answering",
elem_classes=["example-button", "example-code-alt"],
elem_id="example_6_button"
)
state = gr.State(
value=clear_state()
)
basic_tab = gr.Tab("Demo")
with basic_tab:
# gr.Markdown("## Demo")
gr.Markdown(
"Enter your context and instruction below to try out AttnTrace! You can also click on the example buttons above to load pre-configured examples."
)
gr.Markdown(
'**Color Legend for Context Traceback (by ranking):** <span style="background-color: #FF4444; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Red</span> = 1st (most important) | <span style="background-color: #FF8C42; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Orange</span> = 2nd | <span style="background-color: #FFD93D; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Golden</span> = 3rd | <span style="background-color: #FFF280; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Yellow</span> = 4th-5th | <span style="background-color: #FFF9C4; color: black; padding: 2px 6px; border-radius: 4px; font-weight: 600;">Light</span> = 6th+'
)
# Top section: Wide Context box with tabs
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs() as basic_context_tabs:
with gr.TabItem("Context", id=0):
basic_context_box = gr.Textbox(
placeholder="Enter context...",
show_label=False,
value="",
lines=6,
max_lines=6,
elem_id="basic_context_box",
autoscroll=False,
)
with gr.TabItem("Context with highlighted traceback results", id=1, visible=True) as basic_sources_in_context_tab:
basic_sources_in_context_box = HighlightedTextbox(
value=[("Click on a sentence in the response below to see highlighted traceback results here.", None)],
show_legend_label=False,
show_label=False,
show_legend=False,
interactive=False,
elem_id="basic_sources_in_context_box",
)
# Error messages
basic_generate_error_box = HighlightedTextbox(
show_legend_label=False,
show_label=False,
show_legend=False,
visible=False,
interactive=False,
container=False,
)
# Bottom section: Left (instruction + button + response), Right (response selection)
with gr.Row(equal_height=True):
# Left: Instruction + Button + Response
with gr.Column(scale=1):
basic_query_box = gr.Textbox(
label="Instruction",
placeholder="Enter an instruction...",
value="",
lines=3,
max_lines=3,
)
unified_response_button = gr.Button(
"Generate/Use Response",
variant="primary",
size="lg"
)
response_input_box = gr.Textbox(
label="Response (Editable)",
placeholder="Response will appear here after generation, or type your own response for traceback...",
lines=8,
max_lines=8,
info="Leave empty and click button to generate from LLM, or type your own response to use for traceback"
)
# Right: Response for attribution selection
with gr.Column(scale=1):
basic_response_box = gr.HighlightedText(
label="Click to select text for traceback!",
value=[("Click the 'Generate/Use Response' button on the left to see response text here for traceback analysis.", None)],
interactive=False,
combine_adjacent=False,
show_label=True,
show_legend=False,
elem_id="basic_response_box",
visible=True,
)
# Button for full response traceback
full_response_traceback_button = gr.Button(
"π Traceback Entire Response",
variant="secondary",
size="sm"
)
# Hidden error box and dummy elements
basic_attribute_error_box = HighlightedTextbox(
show_legend_label=False,
show_label=False,
show_legend=False,
visible=False,
interactive=False,
container=False,
)
dummy_basic_sources_box = gr.Textbox(
visible=False, interactive=False, container=False
)
# Only a single (AttnTrace) method and model in this simplified version
def basic_clear_state():
state = clear_state()
return (
"", # basic_context_box
"", # basic_query_box
"", # response_input_box
gr.update(value=[("Click the 'Generate/Use Response' button above to see response text here for traceback analysis.", None)]), # basic_response_box - keep visible
gr.update(selected=0), # basic_context_tabs - switch to first tab
state,
)
# Defining behavior of various interactions for the basic tab
basic_tab.select(
fn=basic_clear_state,
inputs=[],
outputs=[
basic_context_box,
basic_query_box,
response_input_box,
basic_response_box,
basic_context_tabs,
state,
],
)
for component in [basic_context_box, basic_query_box]:
component.change(
basic_update,
[basic_context_box, basic_query_box, state],
[
basic_response_box,
basic_context_tabs,
state,
],
)
# Example button event handlers - now update both UI and state
outputs_for_examples = [
basic_context_box,
basic_query_box,
state,
response_input_box,
basic_response_box,
basic_context_tabs,
]
example_1_btn.click(
fn=partial(load_an_example, run_example_1),
inputs=[state],
outputs=outputs_for_examples
)
example_2_btn.click(
fn=partial(load_an_example, run_example_2),
inputs=[state],
outputs=outputs_for_examples
)
example_3_btn.click(
fn=partial(load_an_example, run_example_3),
inputs=[state],
outputs=outputs_for_examples
)
example_4_btn.click(
fn=partial(load_an_example, run_example_4),
inputs=[state],
outputs=outputs_for_examples
)
example_5_btn.click(
fn=partial(load_an_example, run_example_5),
inputs=[state],
outputs=outputs_for_examples
)
example_6_btn.click(
fn=partial(load_an_example, run_example_6),
inputs=[state],
outputs=outputs_for_examples
)
unified_response_button.click(
fn=lambda: None,
inputs=[],
outputs=[],
js=get_scroll_js_code("basic_response_box"),
)
basic_response_box.change(
fn=lambda: None,
inputs=[],
outputs=[],
js=get_scroll_js_code("basic_sources_in_context_box"),
)
# Add immediate tab switch on response selection
def immediate_tab_switch():
return (
gr.update(value=[("π Processing traceback... Please wait...", None)]), # Show progress message
gr.update(selected=1), # Switch to annotation tab immediately
)
basic_response_box.select(
fn=immediate_tab_switch,
inputs=[],
outputs=[basic_sources_in_context_box, basic_context_tabs],
queue=False, # Execute immediately without queue
)
basic_response_box.select(
fn=basic_get_scores_and_sources,
inputs=[basic_response_box, state],
outputs=[
basic_sources_in_context_box,
basic_context_tabs,
basic_sources_in_context_tab,
dummy_basic_sources_box,
basic_attribute_error_box,
state,
],
show_progress="full",
)
basic_response_box.select(
fn=basic_update_highlighted_response,
inputs=[state],
outputs=[basic_response_box, state],
)
# Full response traceback button
full_response_traceback_button.click(
fn=immediate_tab_switch,
inputs=[],
outputs=[basic_sources_in_context_box, basic_context_tabs],
queue=False, # Execute immediately without queue
)
full_response_traceback_button.click(
fn=basic_get_scores_and_sources_full_response,
inputs=[state],
outputs=[
basic_sources_in_context_box,
basic_context_tabs,
basic_sources_in_context_tab,
dummy_basic_sources_box,
basic_attribute_error_box,
state,
],
show_progress="full",
)
dummy_basic_sources_box.change(
fn=lambda: None,
inputs=[],
outputs=[],
js=get_scroll_js_code("basic_sources_in_context_box"),
)
# Unified response handler
unified_response_button.click(
fn=unified_response_handler,
inputs=[response_input_box, state],
outputs=[state, response_input_box, basic_response_box, basic_generate_error_box]
)
# gr.Markdown(
# "Please do not interact with elements while generation/attribution is in progress. This may cause errors. You can refresh the page if you run into issues because of this."
# )
demo.launch(show_api=False, share=True)
|