Spaces:
Build error
Build error
hf_token
#1
by
Segizu
- opened
- .gitattributes +0 -1
- .gitignore +0 -13
- README.md +6 -24
- app.py +62 -338
- metadata.csv +0 -0
- metadata.py +0 -23
- requirements.txt +3 -6
.gitattributes
CHANGED
@@ -34,4 +34,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
-
spaces::accelerator gpu
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
.gitignore
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
.env
|
2 |
-
.venv
|
3 |
-
.env.local
|
4 |
-
.env.development.local
|
5 |
-
.env.test.local
|
6 |
-
.env.production.local
|
7 |
-
|
8 |
-
/venv
|
9 |
-
/embeddings
|
10 |
-
/batches
|
11 |
-
/metadata.csv
|
12 |
-
/metadata.csv.gz
|
13 |
-
/metadata.csv.gz.part
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,30 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
This application uses DeepFace and Facenet for facial recognition and similarity matching.
|
15 |
-
|
16 |
-
## Hardware Requirements
|
17 |
-
- GPU: Required
|
18 |
-
- CPU: 4+ cores recommended
|
19 |
-
- RAM: 8GB+ recommended
|
20 |
-
|
21 |
-
## Environment Setup
|
22 |
-
The application requires the following key dependencies:
|
23 |
-
- deepface
|
24 |
-
- gradio
|
25 |
-
- huggingface_hub
|
26 |
-
- datasets
|
27 |
-
- Pillow
|
28 |
-
- numpy
|
29 |
-
|
30 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Face Recognition
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.23.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,359 +1,83 @@
|
|
1 |
-
import os
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
from deepface import DeepFace
|
6 |
-
from datasets import load_dataset
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Configurar memoria GPU
|
22 |
-
gpus = tf.config.list_physical_devices('GPU')
|
23 |
-
if gpus:
|
24 |
-
try:
|
25 |
-
# Permitir crecimiento de memoria
|
26 |
-
for gpu in gpus:
|
27 |
-
tf.config.experimental.set_memory_growth(gpu, True)
|
28 |
-
print("✅ GPU configurada correctamente")
|
29 |
-
|
30 |
-
# Configurar para usar solo GPU
|
31 |
-
tf.config.set_visible_devices(gpus[0], 'GPU')
|
32 |
-
print(f"✅ Usando GPU: {gpus[0]}")
|
33 |
-
except RuntimeError as e:
|
34 |
-
print(f"⚠️ Error configurando GPU: {e}")
|
35 |
-
else:
|
36 |
-
print("⚠️ No se detectó GPU, usando CPU")
|
37 |
-
|
38 |
-
# Configurar para usar mixed precision
|
39 |
-
tf.keras.mixed_precision.set_global_policy('mixed_float16')
|
40 |
-
|
41 |
-
# 🔁 Limpiar almacenamiento temporal si existe
|
42 |
-
def clean_temp_dirs():
|
43 |
-
print("🧹 Limpiando carpetas temporales...")
|
44 |
-
for folder in ["embeddings", "batches"]:
|
45 |
-
path = Path(folder)
|
46 |
-
if path.exists() and path.is_dir():
|
47 |
-
shutil.rmtree(path)
|
48 |
-
print(f"✅ Carpeta eliminada: {folder}")
|
49 |
-
path.mkdir(exist_ok=True)
|
50 |
-
|
51 |
-
clean_temp_dirs()
|
52 |
-
|
53 |
-
# 📁 Parámetros
|
54 |
-
DATASET_ID = "Segizu/facial-recognition-preview"
|
55 |
-
EMBEDDINGS_SUBFOLDER = "embeddings"
|
56 |
-
LOCAL_EMB_DIR = Path("embeddings")
|
57 |
-
LOCAL_EMB_DIR.mkdir(exist_ok=True)
|
58 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
59 |
-
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
|
60 |
-
|
61 |
-
# 💾 Configuración
|
62 |
-
MAX_TEMP_STORAGE_GB = 40
|
63 |
-
UPLOAD_EVERY = 50
|
64 |
-
|
65 |
-
def get_folder_size(path):
|
66 |
-
total = 0
|
67 |
-
for dirpath, _, filenames in os.walk(path):
|
68 |
-
for f in filenames:
|
69 |
-
fp = os.path.join(dirpath, f)
|
70 |
-
total += os.path.getsize(fp)
|
71 |
-
return total / (1024 ** 3)
|
72 |
-
|
73 |
-
def preprocess_image(img: Image.Image) -> np.ndarray:
|
74 |
-
# Convertir a RGB si no lo es
|
75 |
-
if img.mode != 'RGB':
|
76 |
-
img = img.convert('RGB')
|
77 |
-
|
78 |
-
# Obtener la orientación EXIF si existe
|
79 |
-
try:
|
80 |
-
exif = img._getexif()
|
81 |
-
if exif is not None:
|
82 |
-
orientation = exif.get(274) # 274 es el tag de orientación en EXIF
|
83 |
-
if orientation is not None:
|
84 |
-
# Rotar la imagen según la orientación EXIF
|
85 |
-
if orientation == 3:
|
86 |
-
img = img.rotate(180, expand=True)
|
87 |
-
elif orientation == 6:
|
88 |
-
img = img.rotate(270, expand=True)
|
89 |
-
elif orientation == 8:
|
90 |
-
img = img.rotate(90, expand=True)
|
91 |
-
except:
|
92 |
-
pass # Si no hay EXIF o hay error, continuamos con la imagen original
|
93 |
-
|
94 |
-
# Intentar detectar la orientación del rostro
|
95 |
-
try:
|
96 |
-
# Convertir a array numpy para DeepFace
|
97 |
-
img_array = np.array(img)
|
98 |
-
# Detectar rostros con GPU
|
99 |
-
face_objs = DeepFace.extract_faces(
|
100 |
-
img_path=img_array,
|
101 |
-
target_size=(160, 160),
|
102 |
-
detector_backend='retinaface',
|
103 |
-
enforce_detection=False
|
104 |
-
)
|
105 |
-
|
106 |
-
if face_objs and len(face_objs) > 0:
|
107 |
-
# Si se detecta un rostro, usar la imagen detectada
|
108 |
-
img_array = face_objs[0]['face']
|
109 |
-
return img_array
|
110 |
-
except:
|
111 |
-
pass # Si falla la detección, continuamos con el procesamiento normal
|
112 |
-
|
113 |
-
# Si no se detectó rostro o falló la detección, redimensionar la imagen original
|
114 |
-
img_resized = img.resize((160, 160), Image.Resampling.LANCZOS)
|
115 |
return np.array(img_resized)
|
116 |
|
117 |
-
#
|
118 |
-
dataset = load_dataset(
|
119 |
-
"csv",
|
120 |
-
data_files="metadata.csv",
|
121 |
-
split="train",
|
122 |
-
column_names=["image"],
|
123 |
-
header=0
|
124 |
-
)
|
125 |
def build_database():
|
126 |
-
|
127 |
-
|
128 |
-
batch_size = 10
|
129 |
-
archive_batch_size = 50
|
130 |
-
batch_files = []
|
131 |
-
batch_index = 0
|
132 |
-
ARCHIVE_DIR = Path("batches")
|
133 |
-
ARCHIVE_DIR.mkdir(exist_ok=True)
|
134 |
-
|
135 |
-
for i in range(0, len(dataset), batch_size):
|
136 |
-
batch = dataset[i:i + batch_size]
|
137 |
-
print(f"📦 Lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
138 |
-
|
139 |
-
for j in range(len(batch["image"])):
|
140 |
-
image_url = batch["image"][j]
|
141 |
-
|
142 |
-
if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
|
143 |
-
print(f"⚠️ Saltando {i + j} - URL inválida: {image_url}")
|
144 |
-
continue
|
145 |
-
|
146 |
-
name = f"image_{i + j}"
|
147 |
-
filename = LOCAL_EMB_DIR / f"{name}.pkl"
|
148 |
-
|
149 |
-
# Verificar si ya fue subido
|
150 |
-
try:
|
151 |
-
hf_hub_download(
|
152 |
-
repo_id=DATASET_ID,
|
153 |
-
repo_type="dataset",
|
154 |
-
filename=f"{EMBEDDINGS_SUBFOLDER}/batch_{batch_index:03}.tar.gz",
|
155 |
-
token=HF_TOKEN
|
156 |
-
)
|
157 |
-
print(f"⏩ Ya existe en remoto: {name}.pkl")
|
158 |
-
continue
|
159 |
-
except:
|
160 |
-
pass
|
161 |
-
|
162 |
-
try:
|
163 |
-
response = requests.get(image_url, headers=headers, timeout=10)
|
164 |
-
response.raise_for_status()
|
165 |
-
img = Image.open(BytesIO(response.content)).convert("RGB")
|
166 |
-
|
167 |
-
img_processed = preprocess_image(img)
|
168 |
-
embedding = DeepFace.represent(
|
169 |
-
img_path=img_processed,
|
170 |
-
model_name="Facenet",
|
171 |
-
enforce_detection=False
|
172 |
-
)[0]["embedding"]
|
173 |
-
|
174 |
-
with open(filename, "wb") as f:
|
175 |
-
pickle.dump({"name": name, "img": img, "embedding": embedding}, f)
|
176 |
-
|
177 |
-
batch_files.append(filename)
|
178 |
-
del img_processed
|
179 |
-
gc.collect()
|
180 |
-
|
181 |
-
if len(batch_files) >= archive_batch_size or get_folder_size(".") > MAX_TEMP_STORAGE_GB:
|
182 |
-
archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
|
183 |
-
with tarfile.open(archive_path, "w:gz") as tar:
|
184 |
-
for file in batch_files:
|
185 |
-
tar.add(file, arcname=file.name)
|
186 |
-
|
187 |
-
print(f"📦 Empaquetado: {archive_path}")
|
188 |
-
|
189 |
-
upload_file(
|
190 |
-
path_or_fileobj=str(archive_path),
|
191 |
-
path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
|
192 |
-
repo_id=DATASET_ID,
|
193 |
-
repo_type="dataset",
|
194 |
-
token=HF_TOKEN
|
195 |
-
)
|
196 |
-
print(f"✅ Subido: {archive_path.name}")
|
197 |
-
|
198 |
-
for f in batch_files:
|
199 |
-
f.unlink()
|
200 |
-
archive_path.unlink()
|
201 |
-
print("🧹 Limpieza completada tras subida")
|
202 |
-
|
203 |
-
batch_files = []
|
204 |
-
batch_index += 1
|
205 |
-
time.sleep(2)
|
206 |
-
print(f"📊 Uso actual FINAL: {get_folder_size('.'):.2f} GB")
|
207 |
-
|
208 |
-
except Exception as e:
|
209 |
-
print(f"❌ Error en {name}: {e}")
|
210 |
-
continue
|
211 |
-
|
212 |
-
if batch_files:
|
213 |
-
archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
|
214 |
-
with tarfile.open(archive_path, "w:gz") as tar:
|
215 |
-
for file in batch_files:
|
216 |
-
tar.add(file, arcname=file.name)
|
217 |
-
|
218 |
-
print(f"📦 Empaquetado final: {archive_path}")
|
219 |
-
|
220 |
-
upload_file(
|
221 |
-
path_or_fileobj=str(archive_path),
|
222 |
-
path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
|
223 |
-
repo_id=DATASET_ID,
|
224 |
-
repo_type="dataset",
|
225 |
-
token=HF_TOKEN
|
226 |
-
)
|
227 |
-
|
228 |
-
for f in batch_files:
|
229 |
-
f.unlink()
|
230 |
-
archive_path.unlink()
|
231 |
-
print("✅ Subida y limpieza final")
|
232 |
-
|
233 |
-
# 🔍 Buscar similitudes
|
234 |
-
def find_similar_faces(uploaded_image: Image.Image):
|
235 |
-
if uploaded_image is None:
|
236 |
-
return [], "⚠ Por favor, sube una imagen primero"
|
237 |
-
|
238 |
-
try:
|
239 |
-
print("🔄 Procesando imagen de entrada...")
|
240 |
-
# Convertir a RGB si no lo es
|
241 |
-
if uploaded_image.mode != 'RGB':
|
242 |
-
uploaded_image = uploaded_image.convert('RGB')
|
243 |
-
|
244 |
-
# Mostrar dimensiones de la imagen
|
245 |
-
print(f"📐 Dimensiones de la imagen: {uploaded_image.size}")
|
246 |
-
|
247 |
-
img_processed = preprocess_image(uploaded_image)
|
248 |
-
print("✅ Imagen preprocesada correctamente")
|
249 |
-
|
250 |
-
# Intentar primero con enforce_detection=True
|
251 |
try:
|
252 |
-
|
|
|
|
|
253 |
img_path=img_processed,
|
254 |
model_name="Facenet",
|
255 |
-
enforce_detection=
|
256 |
-
detector_backend='retinaface'
|
257 |
)[0]["embedding"]
|
258 |
-
|
259 |
except Exception as e:
|
260 |
-
print(f"
|
261 |
-
|
262 |
-
query_embedding = DeepFace.represent(
|
263 |
-
img_path=img_processed,
|
264 |
-
model_name="Facenet",
|
265 |
-
enforce_detection=False,
|
266 |
-
detector_backend='retinaface'
|
267 |
-
)[0]["embedding"]
|
268 |
-
print("✅ Embedding generado con enforce_detection=False")
|
269 |
-
|
270 |
-
del img_processed
|
271 |
-
gc.collect()
|
272 |
-
|
273 |
-
except Exception as e:
|
274 |
-
print(f"❌ Error en procesamiento de imagen: {str(e)}")
|
275 |
-
return [], f"⚠ Error procesando imagen: {str(e)}"
|
276 |
-
|
277 |
-
similarities = []
|
278 |
-
print("🔍 Buscando similitudes en la base de datos...")
|
279 |
|
|
|
|
|
280 |
try:
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
return [],
|
289 |
-
|
290 |
-
# Procesar en lotes para mejor rendimiento
|
291 |
-
batch_size = 10
|
292 |
-
for i in range(0, len(embedding_files), batch_size):
|
293 |
-
batch_files = embedding_files[i:i + batch_size]
|
294 |
-
print(f"📦 Procesando lote {i//batch_size + 1}/{(len(embedding_files) + batch_size - 1)//batch_size}")
|
295 |
-
|
296 |
-
for file_path in batch_files:
|
297 |
-
try:
|
298 |
-
file_bytes = requests.get(
|
299 |
-
f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/{file_path}",
|
300 |
-
headers=headers,
|
301 |
-
timeout=30
|
302 |
-
).content
|
303 |
-
|
304 |
-
# Crear un archivo temporal para el tar.gz
|
305 |
-
temp_archive = Path("temp_archive.tar.gz")
|
306 |
-
with open(temp_archive, "wb") as f:
|
307 |
-
f.write(file_bytes)
|
308 |
-
|
309 |
-
# Extraer el contenido
|
310 |
-
with tarfile.open(temp_archive, "r:gz") as tar:
|
311 |
-
tar.extractall(path="temp_extract")
|
312 |
-
|
313 |
-
# Procesar cada archivo .pkl en el tar
|
314 |
-
for pkl_file in Path("temp_extract").glob("*.pkl"):
|
315 |
-
with open(pkl_file, "rb") as f:
|
316 |
-
record = pickle.load(f)
|
317 |
-
|
318 |
-
name = record["name"]
|
319 |
-
img = record["img"]
|
320 |
-
emb = record["embedding"]
|
321 |
-
|
322 |
-
dist = np.linalg.norm(np.array(query_embedding) - np.array(emb))
|
323 |
-
sim_score = 1 / (1 + dist)
|
324 |
-
similarities.append((sim_score, name, np.array(img)))
|
325 |
-
|
326 |
-
# Limpiar archivos temporales
|
327 |
-
shutil.rmtree("temp_extract")
|
328 |
-
temp_archive.unlink()
|
329 |
-
|
330 |
-
except Exception as e:
|
331 |
-
print(f"⚠ Error procesando {file_path}: {e}")
|
332 |
-
continue
|
333 |
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
336 |
|
337 |
-
print(f"✅ Encontradas {len(similarities)} similitudes")
|
338 |
similarities.sort(reverse=True)
|
339 |
-
|
340 |
-
gallery = [(img, f"{name} - Similitud: {sim:.2f}") for sim, name, img in top]
|
341 |
-
summary = "\n".join([f"{name} - Similitud: {sim:.2f}" for sim, name, _ in top])
|
342 |
-
return gallery, summary
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
gallery = gr.Gallery(label="📸 Rostros similares")
|
351 |
-
summary = gr.Textbox(label="🧠 Detalle", lines=6)
|
352 |
-
find_btn.click(fn=find_similar_faces, inputs=image_input, outputs=[gallery, summary])
|
353 |
|
354 |
-
|
355 |
-
build_btn = gr.Button("���️ Construir base de embeddings (usa GPU)")
|
356 |
-
build_btn.click(fn=build_database, inputs=[], outputs=[])
|
357 |
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
+
from datasets import load_dataset, DownloadConfig
|
6 |
+
import os
|
7 |
+
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces")
|
8 |
+
|
9 |
+
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
|
10 |
+
download_config = DownloadConfig(force_download=True)
|
11 |
+
dataset = load_dataset("Segizu/dataset_faces", download_config=download_config)
|
12 |
+
if "train" in dataset:
|
13 |
+
dataset = dataset["train"]
|
14 |
+
|
15 |
+
# 🔄 Preprocesar imagen para Facenet
|
16 |
+
def preprocess_image(img):
|
17 |
+
img_rgb = img.convert("RGB")
|
18 |
+
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return np.array(img_resized)
|
20 |
|
21 |
+
# 📦 Construir base de datos de embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def build_database():
|
23 |
+
database = []
|
24 |
+
for i, item in enumerate(dataset):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
try:
|
26 |
+
img = item["image"]
|
27 |
+
img_processed = preprocess_image(img)
|
28 |
+
embedding = DeepFace.represent(
|
29 |
img_path=img_processed,
|
30 |
model_name="Facenet",
|
31 |
+
enforce_detection=False
|
|
|
32 |
)[0]["embedding"]
|
33 |
+
database.append((f"image_{i}", img, embedding))
|
34 |
except Exception as e:
|
35 |
+
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
36 |
+
return database
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# 🔍 Buscar rostros similares
|
39 |
+
def find_similar_faces(uploaded_image):
|
40 |
try:
|
41 |
+
img_processed = preprocess_image(uploaded_image)
|
42 |
+
query_embedding = DeepFace.represent(
|
43 |
+
img_path=img_processed,
|
44 |
+
model_name="Facenet",
|
45 |
+
enforce_detection=False
|
46 |
+
)[0]["embedding"]
|
47 |
+
except:
|
48 |
+
return [], "⚠ No se detectó un rostro válido en la imagen."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
similarities = []
|
51 |
+
for name, db_img, embedding in database:
|
52 |
+
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
|
53 |
+
sim_score = 1 / (1 + dist)
|
54 |
+
similarities.append((sim_score, name, db_img))
|
55 |
|
|
|
56 |
similarities.sort(reverse=True)
|
57 |
+
top_matches = similarities[:]
|
|
|
|
|
|
|
58 |
|
59 |
+
gallery_items = []
|
60 |
+
text_summary = ""
|
61 |
+
for sim, name, img in top_matches:
|
62 |
+
caption = f"{name} - Similitud: {sim:.2f}"
|
63 |
+
gallery_items.append((img, caption))
|
64 |
+
text_summary += caption + "\n"
|
|
|
|
|
|
|
65 |
|
66 |
+
return gallery_items, text_summary
|
|
|
|
|
67 |
|
68 |
+
# ⚙️ Inicializar base
|
69 |
+
database = build_database()
|
70 |
+
|
71 |
+
# 🎛️ Interfaz Gradio
|
72 |
+
demo = gr.Interface(
|
73 |
+
fn=find_similar_faces,
|
74 |
+
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
75 |
+
outputs=[
|
76 |
+
gr.Gallery(label="📸 Rostros más similares"),
|
77 |
+
gr.Textbox(label="🧠 Similitud", lines=6)
|
78 |
+
],
|
79 |
+
title="🔍 Buscador de Rostros con DeepFace",
|
80 |
+
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/dataset_faces`)."
|
81 |
+
)
|
82 |
|
83 |
+
demo.launch()
|
metadata.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
metadata.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
from huggingface_hub import HfApi
|
2 |
-
import csv
|
3 |
-
import os
|
4 |
-
|
5 |
-
HF_TOKEN = os.getenv("HF_TOKEN") or ""
|
6 |
-
repo_id = "Segizu/facial-recognition"
|
7 |
-
|
8 |
-
api = HfApi()
|
9 |
-
files = api.list_repo_files(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN)
|
10 |
-
|
11 |
-
# Generar URLs completas
|
12 |
-
base_url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
|
13 |
-
image_urls = [base_url + f for f in files if f.lower().endswith(".jpg")]
|
14 |
-
|
15 |
-
# Escribir nuevo metadata.csv
|
16 |
-
with open("metadata.csv", "w", newline="") as f:
|
17 |
-
writer = csv.writer(f)
|
18 |
-
writer.writerow(["image"])
|
19 |
-
for url in image_urls:
|
20 |
-
writer.writerow([url])
|
21 |
-
|
22 |
-
print(f"✅ metadata.csv regenerado con URLs absolutas ({len(image_urls)} imágenes)")
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio
|
2 |
numpy
|
3 |
Pillow
|
4 |
opencv-python-headless
|
@@ -6,9 +6,6 @@ opencv-python-headless
|
|
6 |
# DeepFace desde GitHub
|
7 |
git+https://github.com/serengil/deepface.git
|
8 |
|
9 |
-
#
|
10 |
-
tensorflow
|
11 |
tf-keras
|
12 |
-
spaces
|
13 |
-
datasets
|
14 |
-
pydantic>=2.0.0,<3.0.0
|
|
|
1 |
+
gradio
|
2 |
numpy
|
3 |
Pillow
|
4 |
opencv-python-headless
|
|
|
6 |
# DeepFace desde GitHub
|
7 |
git+https://github.com/serengil/deepface.git
|
8 |
|
9 |
+
# Fixes para RetinaFace
|
10 |
+
tensorflow==2.12.0
|
11 |
tf-keras
|
|
|
|
|
|