Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -68,13 +68,13 @@ class MemoryEfficientNN(nn.Module): 
     | 
|
| 68 | 
         
             
            class MemoryEfficientDataset(IterableDataset):
         
     | 
| 69 | 
         
             
                def __init__(self, X, y, batch_size):
         
     | 
| 70 | 
         
             
                    self.X = X
         
     | 
| 71 | 
         
            -
                    self.y = torch.LongTensor(y 
     | 
| 72 | 
         
             
                    self.batch_size = batch_size
         
     | 
| 73 | 
         | 
| 74 | 
         
             
                def __iter__(self):
         
     | 
| 75 | 
         
             
                    for i in range(0, len(self.y), self.batch_size):
         
     | 
| 76 | 
         
             
                        X_batch = self.X[i:i+self.batch_size].toarray()
         
     | 
| 77 | 
         
            -
                        y_batch = self.y[i:i+self.batch_size] 
     | 
| 78 | 
         
             
                        yield torch.FloatTensor(X_batch), y_batch
         
     | 
| 79 | 
         
             
            # Train Memory-Efficient Neural Network
         
     | 
| 80 | 
         
             
            X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
         
     | 
| 
         @@ -269,7 +269,6 @@ def get_sentiment(text): 
     | 
|
| 269 | 
         
             
                result = sentiment_pipeline(text)[0]
         
     | 
| 270 | 
         
             
                return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
         
     | 
| 271 | 
         | 
| 272 | 
         
            -
             
     | 
| 273 | 
         
             
            def process_input(text):
         
     | 
| 274 | 
         
             
                try:
         
     | 
| 275 | 
         
             
                    normalized_text = normalize_context(text)
         
     | 
| 
         @@ -300,6 +299,7 @@ def process_input(text): 
     | 
|
| 300 | 
         
             
                    error_message = f"An error occurred: {str(e)}"
         
     | 
| 301 | 
         
             
                    print(error_message)  # Logging the error
         
     | 
| 302 | 
         
             
                    return error_message, error_message, error_message, error_message
         
     | 
| 
         | 
|
| 303 | 
         
             
            iface = gr.Interface(
         
     | 
| 304 | 
         
             
                fn=process_input,
         
     | 
| 305 | 
         
             
                inputs="text",
         
     | 
| 
         | 
|
| 68 | 
         
             
            class MemoryEfficientDataset(IterableDataset):
         
     | 
| 69 | 
         
             
                def __init__(self, X, y, batch_size):
         
     | 
| 70 | 
         
             
                    self.X = X
         
     | 
| 71 | 
         
            +
                    self.y = torch.LongTensor(y)  # Convert labels to long tensors
         
     | 
| 72 | 
         
             
                    self.batch_size = batch_size
         
     | 
| 73 | 
         | 
| 74 | 
         
             
                def __iter__(self):
         
     | 
| 75 | 
         
             
                    for i in range(0, len(self.y), self.batch_size):
         
     | 
| 76 | 
         
             
                        X_batch = self.X[i:i+self.batch_size].toarray()
         
     | 
| 77 | 
         
            +
                        y_batch = self.y[i:i+self.batch_size]  # No need to add a new dimension
         
     | 
| 78 | 
         
             
                        yield torch.FloatTensor(X_batch), y_batch
         
     | 
| 79 | 
         
             
            # Train Memory-Efficient Neural Network
         
     | 
| 80 | 
         
             
            X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
         
     | 
| 
         | 
|
| 269 | 
         
             
                result = sentiment_pipeline(text)[0]
         
     | 
| 270 | 
         
             
                return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
         
     | 
| 271 | 
         | 
| 
         | 
|
| 272 | 
         
             
            def process_input(text):
         
     | 
| 273 | 
         
             
                try:
         
     | 
| 274 | 
         
             
                    normalized_text = normalize_context(text)
         
     | 
| 
         | 
|
| 299 | 
         
             
                    error_message = f"An error occurred: {str(e)}"
         
     | 
| 300 | 
         
             
                    print(error_message)  # Logging the error
         
     | 
| 301 | 
         
             
                    return error_message, error_message, error_message, error_message
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
             
            iface = gr.Interface(
         
     | 
| 304 | 
         
             
                fn=process_input,
         
     | 
| 305 | 
         
             
                inputs="text",
         
     |