File size: 15,170 Bytes
22b66c4 55aad04 22b66c4 55aad04 e55c4b9 22b66c4 16eb022 22b66c4 5041924 22b66c4 16eb022 22b66c4 16eb022 5041924 22b66c4 16eb022 5041924 22b66c4 16eb022 5041924 22b66c4 5041924 22b66c4 5041924 22b66c4 16eb022 5041924 16eb022 22b66c4 16eb022 22b66c4 1140353 16eb022 1140353 22b66c4 1140353 16eb022 5041924 16eb022 5041924 22b66c4 5041924 16eb022 22b66c4 1140353 22b66c4 16eb022 22b66c4 55aad04 16eb022 5041924 55aad04 1140353 22b66c4 16eb022 22b66c4 1140353 22b66c4 1140353 22b66c4 1140353 22b66c4 55aad04 5041924 55aad04 1140353 a841a36 5041924 55aad04 5041924 55aad04 5041924 22b66c4 55aad04 5041924 60a321b 5041924 60a321b f259ff8 5041924 f259ff8 5041924 f259ff8 5041924 f259ff8 60a321b 5041924 60a321b f259ff8 5041924 60a321b f259ff8 22b66c4 d4c9b56 f259ff8 d4c9b56 22b66c4 d4c9b56 1140353 22b66c4 d4c9b56 4e0890b 5041924 d4c9b56 5041924 d4c9b56 4e0890b 5041924 6d93a88 d4c9b56 6d93a88 5041924 6d93a88 68b5b1a 6d93a88 5041924 6d93a88 5041924 6d93a88 9a99e1b 6d93a88 d4c9b56 9a99e1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import random
import numpy as np
import streamlit as st
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import time
from collections import deque # Add this line
import threading
class Organelle:
def __init__(self, type):
self.type = type
class Cell:
def __init__(self, x, y, cell_type="prokaryote"):
self.x = x
self.y = y
self.energy = 100
self.cell_type = cell_type
self.organelles = set()
self.size = 1
self.color = "lightblue"
self.division_threshold = 150
self.update_properties()
def update_properties(self):
if self.cell_type == "early_eukaryote":
self.organelles.add("nucleus")
self.color = "green"
self.size = 2
elif self.cell_type == "advanced_eukaryote":
self.organelles.update(["nucleus", "mitochondria"])
self.color = "red"
self.size = 3
elif self.cell_type == "plant_like":
self.organelles.update(["nucleus", "mitochondria", "chloroplast"])
self.color = "darkgreen"
self.size = 4
elif self.cell_type == "complete":
self.organelles.update(["nucleus", "mitochondria", "chloroplast", "endoplasmic_reticulum", "golgi_apparatus"])
self.color = "purple"
self.size = 5
def move(self, environment):
dx, dy = random.uniform(-1, 1), random.uniform(-1, 1)
self.x = max(0, min(environment.width - 1, self.x + dx))
self.y = max(0, min(environment.height - 1, self.y + dy))
self.energy -= 0.5 * self.size
def feed(self, environment):
base_energy = environment.grid[int(self.y)][int(self.x)] * 0.1
if "chloroplast" in self.organelles:
base_energy += environment.light_level * 2
self.energy += base_energy
environment.grid[int(self.y)][int(self.x)] *= 0.9
def can_divide(self):
return self.energy > self.division_threshold
def divide(self):
if self.can_divide():
self.energy /= 2
new_cell = Cell(self.x, self.y, self.cell_type)
new_cell.organelles = self.organelles.copy()
return new_cell
return None
def can_merge(self, other):
return (self.cell_type == other.cell_type and
random.random() < 0.01) # 1% chance of merging
def merge(self, other):
new_cell_type = self.cell_type
if self.cell_type == "prokaryote":
new_cell_type = "early_eukaryote"
elif self.cell_type == "early_eukaryote":
new_cell_type = "advanced_eukaryote"
elif self.cell_type == "advanced_eukaryote":
new_cell_type = "plant_like"
elif self.cell_type == "plant_like":
new_cell_type = "complete"
new_cell = Cell((self.x + other.x) / 2, (self.y + other.y) / 2, new_cell_type)
new_cell.energy = self.energy + other.energy
new_cell.organelles = self.organelles.union(other.organelles)
new_cell.update_properties()
return new_cell
class Environment:
def __init__(self, width, height, effects):
self.width = width
self.height = height
self.grid = np.random.rand(height, width) * 10
self.light_level = 5
self.cells = []
self.time = 0
self.population_history = {
"prokaryote": [], "early_eukaryote": [],
"advanced_eukaryote": [], "plant_like": [], "complete": []
}
self.effects = effects
def add_cell(self, cell):
self.cells.append(cell)
def update(self):
self.time += 1
self.grid += np.random.rand(self.height, self.width) * 0.1
self.light_level = 5 + np.sin(self.time / 100) * 2
new_cells = []
cells_to_remove = []
for cell in self.cells:
cell.move(self)
cell.feed(self)
if cell.energy <= 0:
cells_to_remove.append(cell)
elif cell.can_divide():
new_cell = cell.divide()
if new_cell:
new_cells.append(new_cell)
# Handle cell merging
for i, cell1 in enumerate(self.cells):
for cell2 in self.cells[i+1:]:
if cell1.can_merge(cell2):
new_cell = cell1.merge(cell2)
new_cells.append(new_cell)
cells_to_remove.extend([cell1, cell2])
# Apply effects
if self.effects['radiation']:
self.apply_radiation()
if self.effects['predation']:
self.apply_predation()
if self.effects['symbiosis']:
self.apply_symbiosis()
# Add new cells and remove dead/merged cells
self.cells.extend(new_cells)
self.cells = [cell for cell in self.cells if cell not in cells_to_remove]
# Record population counts
for cell_type in self.population_history.keys():
count = len([cell for cell in self.cells if cell.cell_type == cell_type])
self.population_history[cell_type].append(count)
def apply_radiation(self):
for cell in self.cells:
if random.random() < 0.01: # 1% chance of mutation
cell.energy *= 0.8
if random.random() < 0.5:
cell.organelles.add(random.choice(["nucleus", "mitochondria", "chloroplast", "endoplasmic_reticulum", "golgi_apparatus"]))
else:
if cell.organelles:
cell.organelles.remove(random.choice(list(cell.organelles)))
cell.update_properties()
def apply_predation(self):
for i, predator in enumerate(self.cells):
if predator.cell_type in ["advanced_eukaryote", "plant_like", "complete"]:
for prey in self.cells[i+1:]:
if prey.cell_type in ["prokaryote", "early_eukaryote"] and random.random() < 0.05:
predator.energy += prey.energy * 0.5
self.cells.remove(prey)
def apply_symbiosis(self):
for i, cell1 in enumerate(self.cells):
for cell2 in self.cells[i+1:]:
if cell1.cell_type != cell2.cell_type and random.random() < 0.01:
shared_energy = (cell1.energy + cell2.energy) * 0.1
cell1.energy += shared_energy
cell2.energy += shared_energy
def get_visualization_data(self):
cell_data = {cell_type: {"x": [], "y": [], "size": []} for cell_type in self.population_history.keys()}
colors = {"prokaryote": "lightblue", "early_eukaryote": "green", "advanced_eukaryote": "red", "plant_like": "darkgreen", "complete": "purple"}
for cell in self.cells:
cell_data[cell.cell_type]["x"].append(cell.x)
cell_data[cell.cell_type]["y"].append(cell.y)
cell_data[cell.cell_type]["size"].append(cell.size * 3)
return cell_data, self.population_history, colors
def setup_figure(env):
cell_types = list(env.population_history.keys())
fig = make_subplots(rows=2, cols=2,
subplot_titles=("Cell Distribution", "Total Population",
"Population by Cell Type", "Organelle Distribution"),
vertical_spacing=0.1,
horizontal_spacing=0.05)
cell_data, population_history, colors = env.get_visualization_data()
# Cell distribution
for cell_type, data in cell_data.items():
fig.add_trace(go.Scatter(
x=data["x"], y=data["y"], mode='markers',
marker=dict(color=colors[cell_type], size=data["size"]),
name=cell_type
), row=1, col=1)
# Total population over time
total_population = [sum(counts) for counts in zip(*population_history.values())]
fig.add_trace(go.Scatter(y=total_population, mode='lines', name="Total"), row=1, col=2)
# Population by cell type
for cell_type, counts in population_history.items():
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, line=dict(color=colors[cell_type])), row=2, col=1)
# Organelle distribution
organelle_counts = {"nucleus": 0, "mitochondria": 0, "chloroplast": 0, "endoplasmic_reticulum": 0, "golgi_apparatus": 0}
for cell in env.cells:
for organelle in cell.organelles:
organelle_counts[organelle] += 1
fig.add_trace(go.Bar(x=list(organelle_counts.keys()), y=list(organelle_counts.values()), name="Organelles"), row=2, col=2)
fig.update_xaxes(title_text="X", row=1, col=1)
fig.update_yaxes(title_text="Y", row=1, col=1)
fig.update_xaxes(title_text="Time", row=1, col=2)
fig.update_yaxes(title_text="Population", row=1, col=2)
fig.update_xaxes(title_text="Time", row=2, col=1)
fig.update_yaxes(title_text="Population", row=2, col=1)
fig.update_xaxes(title_text="Organelle", row=2, col=2)
fig.update_yaxes(title_text="Count", row=2, col=2)
fig.update_layout(height=800, width=1200, title_text="Advanced Cell Evolution Simulation")
return fig
def format_number(num):
if num >= 1_000_000:
return f"{num/1_000_000:.1f}M"
elif num >= 1_000:
return f"{num/1_000:.1f}K"
else:
return str(num)
# Streamlit app
st.title("Continuous Cell Evolution Simulation")
# Sidebar for controls and live statistics
st.sidebar.header("Simulation Controls")
initial_cells = st.sidebar.slider("Initial number of cells", 10, 500, 200)
update_interval = st.sidebar.slider("Update interval (seconds)", 0.01, 1.0, 0.05)
st.sidebar.header("Environmental Effects")
radiation = st.sidebar.checkbox("Radiation")
predation = st.sidebar.checkbox("Predation")
symbiosis = st.sidebar.checkbox("Symbiosis")
effects = {
"radiation": radiation,
"predation": predation,
"symbiosis": symbiosis
}
# Live statistics placeholders
st.sidebar.header("Live Statistics")
total_cells_text = st.sidebar.empty()
cell_type_breakdown = st.sidebar.empty()
dominant_type_text = st.sidebar.empty()
avg_energy_text = st.sidebar.empty()
total_merges_text = st.sidebar.empty()
# Event log
st.sidebar.header("Event Log")
event_log = deque(maxlen=10) # Keep the last 10 events
event_log_text = st.sidebar.empty()
# Create placeholders for the chart
chart_placeholder = st.empty()
# Initialize session state
if 'running' not in st.session_state:
st.session_state.running = False
if 'total_merges' not in st.session_state:
st.session_state.total_merges = 0
if 'env' not in st.session_state:
st.session_state.env = None
if 'fig' not in st.session_state:
st.session_state.fig = None
def toggle_simulation():
st.session_state.running = not st.session_state.running
if st.session_state.running and st.session_state.env is None:
st.session_state.env = Environment(100, 100, effects)
for _ in range(initial_cells):
cell = Cell(random.uniform(0, st.session_state.env.width), random.uniform(0, st.session_state.env.height))
st.session_state.env.add_cell(cell)
st.session_state.fig = setup_figure(st.session_state.env)
start_stop_button = st.button("Start/Stop Simulation", on_click=toggle_simulation)
def run_simulation_step():
if st.session_state.running and st.session_state.env is not None:
for _ in range(4): # Update 4 times per frame to increase simulation speed
initial_cell_count = len(st.session_state.env.cells)
st.session_state.env.update()
final_cell_count = len(st.session_state.env.cells)
# Check for merges
if final_cell_count < initial_cell_count:
merges = initial_cell_count - final_cell_count
st.session_state.total_merges += merges
event_log.appendleft(f"Time {st.session_state.env.time}: {merges} cell merge(s) occurred!")
# Check for new cell types
for cell in st.session_state.env.cells:
if cell.cell_type not in st.session_state.env.population_history:
event_log.appendleft(f"Time {st.session_state.env.time}: New cell type '{cell.cell_type}' emerged!")
update_chart()
def update_chart():
if st.session_state.running and st.session_state.fig is not None:
with st.session_state.fig.batch_update():
cell_data, population_history, colors = st.session_state.env.get_visualization_data()
# Update cell distribution
for i, (cell_type, data) in enumerate(cell_data.items()):
st.session_state.fig.data[i].x = data["x"]
st.session_state.fig.data[i].y = data["y"]
st.session_state.fig.data[i].marker.size = data["size"]
# Update total population
total_population = [sum(counts) for counts in zip(*population_history.values())]
st.session_state.fig.data[len(cell_data)].y = total_population
# Update population by cell type
for i, (cell_type, counts) in enumerate(population_history.items()):
st.session_state.fig.data[len(cell_data) + 1 + i].y = counts
# Update organelle distribution
organelle_counts = {"nucleus": 0, "mitochondria": 0, "chloroplast": 0, "endoplasmic_reticulum": 0, "golgi_apparatus": 0}
for cell in st.session_state.env.cells:
for organelle in cell.organelles:
organelle_counts[organelle] += 1
st.session_state.fig.data[-1].y = list(organelle_counts.values())
# Update live statistics
total_cells = len(st.session_state.env.cells)
total_cells_text.text(f"Total Cells: {format_number(total_cells)}")
cell_type_counts = {cell_type: len([c for c in st.session_state.env.cells if c.cell_type == cell_type]) for cell_type in st.session_state.env.population_history.keys()}
cell_type_breakdown.text("Cell Type Breakdown:\n" + "\n".join([f"{cell_type}: {format_number(count)}" for cell_type, count in cell_type_counts.items()]))
dominant_type = max(cell_type_counts, key=cell_type_counts.get)
dominant_type_text.text(f"Dominant Type: {dominant_type}")
avg_energy = sum(cell.energy for cell in st.session_state.env.cells) / total_cells if total_cells > 0 else 0
avg_energy_text.text(f"Avg Energy: {avg_energy:.2f}")
total_merges_text.text(f"Total Merges: {st.session_state.total_merges}")
# Update event log
event_log_text.text("Recent Events:\n" + "\n".join(event_log))
chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)
# Main loop placeholder
main_placeholder = st.empty()
# Main loop
while True:
with main_placeholder.container():
run_simulation_step()
time.sleep(update_interval)
# Break the loop if the simulation is stopped
if not st.session_state.running:
break |