File size: 14,634 Bytes
22b66c4
 
55aad04
22b66c4
 
55aad04
e55c4b9
 
22b66c4
 
 
16eb022
 
22b66c4
 
 
 
 
 
5041924
22b66c4
16eb022
22b66c4
16eb022
 
 
 
5041924
22b66c4
 
16eb022
5041924
22b66c4
 
16eb022
5041924
22b66c4
 
5041924
 
 
 
22b66c4
 
5041924
22b66c4
 
 
 
 
16eb022
5041924
16eb022
 
 
22b66c4
 
 
 
 
 
 
16eb022
 
 
22b66c4
 
1140353
16eb022
1140353
22b66c4
1140353
16eb022
 
 
 
 
5041924
 
 
 
16eb022
5041924
22b66c4
5041924
16eb022
22b66c4
 
 
1140353
22b66c4
 
16eb022
 
22b66c4
 
55aad04
16eb022
5041924
55aad04
1140353
22b66c4
 
 
 
 
 
 
16eb022
22b66c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140353
22b66c4
 
1140353
 
22b66c4
 
 
1140353
 
 
 
 
 
 
 
 
22b66c4
 
 
55aad04
 
5041924
55aad04
 
1140353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a841a36
5041924
 
55aad04
 
5041924
 
 
55aad04
5041924
22b66c4
55aad04
5041924
 
60a321b
5041924
60a321b
 
f259ff8
5041924
 
f259ff8
5041924
f259ff8
 
5041924
f259ff8
 
 
60a321b
5041924
 
 
 
 
 
 
 
 
 
 
 
 
 
60a321b
f259ff8
 
 
 
5041924
 
 
 
60a321b
 
f259ff8
 
22b66c4
d4c9b56
 
 
 
 
 
 
 
d015dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b66c4
d4c9b56
 
 
 
1140353
 
 
 
 
 
 
 
 
 
 
22b66c4
d4c9b56
 
 
 
 
 
 
 
 
 
 
 
 
 
4e0890b
5041924
12c7f18
 
5041924
 
d4c9b56
 
 
 
 
 
5041924
0b5745b
 
 
d4c9b56
 
 
 
 
4e0890b
0b5745b
 
5041924
0b5745b
 
6d93a88
0b5745b
 
6d93a88
0b5745b
 
d4c9b56
0b5745b
 
9a99e1b
fc14acd
 
 
 
 
 
0b5745b
fc14acd
 
 
 
 
0b5745b
fc14acd
 
 
 
 
0b5745b
12c7f18
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import random
import numpy as np
import streamlit as st
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import time
from collections import deque  # Add this line
import threading

class Organelle:
    def __init__(self, type):
        self.type = type

class Cell:
    def __init__(self, x, y, cell_type="prokaryote"):
        self.x = x
        self.y = y
        self.energy = 100
        self.cell_type = cell_type
        self.organelles = set()
        self.size = 1
        self.color = "lightblue"
        self.division_threshold = 150
        self.update_properties()

    def update_properties(self):
        if self.cell_type == "early_eukaryote":
            self.organelles.add("nucleus")
            self.color = "green"
            self.size = 2
        elif self.cell_type == "advanced_eukaryote":
            self.organelles.update(["nucleus", "mitochondria"])
            self.color = "red"
            self.size = 3
        elif self.cell_type == "plant_like":
            self.organelles.update(["nucleus", "mitochondria", "chloroplast"])
            self.color = "darkgreen"
            self.size = 4
        elif self.cell_type == "complete":
            self.organelles.update(["nucleus", "mitochondria", "chloroplast", "endoplasmic_reticulum", "golgi_apparatus"])
            self.color = "purple"
            self.size = 5

    def move(self, environment):
        dx, dy = random.uniform(-1, 1), random.uniform(-1, 1)
        self.x = max(0, min(environment.width - 1, self.x + dx))
        self.y = max(0, min(environment.height - 1, self.y + dy))
        self.energy -= 0.5 * self.size

    def feed(self, environment):
        base_energy = environment.grid[int(self.y)][int(self.x)] * 0.1
        if "chloroplast" in self.organelles:
            base_energy += environment.light_level * 2
        self.energy += base_energy
        environment.grid[int(self.y)][int(self.x)] *= 0.9

    def can_divide(self):
        return self.energy > self.division_threshold

    def divide(self):
        if self.can_divide():
            self.energy /= 2
            new_cell = Cell(self.x, self.y, self.cell_type)
            new_cell.organelles = self.organelles.copy()
            return new_cell
        return None

    def can_merge(self, other):
        return (self.cell_type == other.cell_type and
                random.random() < 0.01)  # 1% chance of merging

    def merge(self, other):
        new_cell_type = self.cell_type
        if self.cell_type == "prokaryote":
            new_cell_type = "early_eukaryote"
        elif self.cell_type == "early_eukaryote":
            new_cell_type = "advanced_eukaryote"
        elif self.cell_type == "advanced_eukaryote":
            new_cell_type = "plant_like"
        elif self.cell_type == "plant_like":
            new_cell_type = "complete"

        new_cell = Cell((self.x + other.x) / 2, (self.y + other.y) / 2, new_cell_type)
        new_cell.energy = self.energy + other.energy
        new_cell.organelles = self.organelles.union(other.organelles)
        new_cell.update_properties()
        return new_cell

class Environment:
    def __init__(self, width, height, effects):
        self.width = width
        self.height = height
        self.grid = np.random.rand(height, width) * 10
        self.light_level = 5
        self.cells = []
        self.time = 0
        self.population_history = {
            "prokaryote": [], "early_eukaryote": [],
            "advanced_eukaryote": [], "plant_like": [], "complete": []
        }
        self.effects = effects

    def add_cell(self, cell):
        self.cells.append(cell)

    def update(self):
        self.time += 1
        self.grid += np.random.rand(self.height, self.width) * 0.1
        self.light_level = 5 + np.sin(self.time / 100) * 2

        new_cells = []
        cells_to_remove = []

        for cell in self.cells:
            cell.move(self)
            cell.feed(self)

            if cell.energy <= 0:
                cells_to_remove.append(cell)
            elif cell.can_divide():
                new_cell = cell.divide()
                if new_cell:
                    new_cells.append(new_cell)

        # Handle cell merging
        for i, cell1 in enumerate(self.cells):
            for cell2 in self.cells[i+1:]:
                if cell1.can_merge(cell2):
                    new_cell = cell1.merge(cell2)
                    new_cells.append(new_cell)
                    cells_to_remove.extend([cell1, cell2])

        # Apply effects
        if self.effects['radiation']:
            self.apply_radiation()
        if self.effects['predation']:
            self.apply_predation()
        if self.effects['symbiosis']:
            self.apply_symbiosis()

        # Add new cells and remove dead/merged cells
        self.cells.extend(new_cells)
        self.cells = [cell for cell in self.cells if cell not in cells_to_remove]

        # Record population counts
        for cell_type in self.population_history.keys():
            count = len([cell for cell in self.cells if cell.cell_type == cell_type])
            self.population_history[cell_type].append(count)

    def apply_radiation(self):
        for cell in self.cells:
            if random.random() < 0.01:  # 1% chance of mutation
                cell.energy *= 0.8
                if random.random() < 0.5:
                    cell.organelles.add(random.choice(["nucleus", "mitochondria", "chloroplast", "endoplasmic_reticulum", "golgi_apparatus"]))
                else:
                    if cell.organelles:
                        cell.organelles.remove(random.choice(list(cell.organelles)))
                cell.update_properties()

    def apply_predation(self):
        for i, predator in enumerate(self.cells):
            if predator.cell_type in ["advanced_eukaryote", "plant_like", "complete"]:
                for prey in self.cells[i+1:]:
                    if prey.cell_type in ["prokaryote", "early_eukaryote"] and random.random() < 0.05:
                        predator.energy += prey.energy * 0.5
                        self.cells.remove(prey)

    def apply_symbiosis(self):
        for i, cell1 in enumerate(self.cells):
            for cell2 in self.cells[i+1:]:
                if cell1.cell_type != cell2.cell_type and random.random() < 0.01:
                    shared_energy = (cell1.energy + cell2.energy) * 0.1
                    cell1.energy += shared_energy
                    cell2.energy += shared_energy

    def get_visualization_data(self):
        cell_data = {cell_type: {"x": [], "y": [], "size": []} for cell_type in self.population_history.keys()}
        colors = {"prokaryote": "lightblue", "early_eukaryote": "green", "advanced_eukaryote": "red", "plant_like": "darkgreen", "complete": "purple"}

        for cell in self.cells:
            cell_data[cell.cell_type]["x"].append(cell.x)
            cell_data[cell.cell_type]["y"].append(cell.y)
            cell_data[cell.cell_type]["size"].append(cell.size * 3)

        return cell_data, self.population_history, colors

def setup_figure(env):
    cell_types = list(env.population_history.keys())
    fig = make_subplots(rows=2, cols=2, 
                        subplot_titles=("Cell Distribution", "Total Population", 
                                        "Population by Cell Type", "Organelle Distribution"),
                        vertical_spacing=0.1,
                        horizontal_spacing=0.05)

    cell_data, population_history, colors = env.get_visualization_data()

    # Cell distribution
    for cell_type, data in cell_data.items():
        fig.add_trace(go.Scatter(
            x=data["x"], y=data["y"], mode='markers',
            marker=dict(color=colors[cell_type], size=data["size"]),
            name=cell_type
        ), row=1, col=1)

    # Total population over time
    total_population = [sum(counts) for counts in zip(*population_history.values())]
    fig.add_trace(go.Scatter(y=total_population, mode='lines', name="Total"), row=1, col=2)

    # Population by cell type
    for cell_type, counts in population_history.items():
        fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, line=dict(color=colors[cell_type])), row=2, col=1)

    # Organelle distribution
    organelle_counts = {"nucleus": 0, "mitochondria": 0, "chloroplast": 0, "endoplasmic_reticulum": 0, "golgi_apparatus": 0}
    for cell in env.cells:
        for organelle in cell.organelles:
            organelle_counts[organelle] += 1
    
    fig.add_trace(go.Bar(x=list(organelle_counts.keys()), y=list(organelle_counts.values()), name="Organelles"), row=2, col=2)

    fig.update_xaxes(title_text="X", row=1, col=1)
    fig.update_yaxes(title_text="Y", row=1, col=1)
    fig.update_xaxes(title_text="Time", row=1, col=2)
    fig.update_yaxes(title_text="Population", row=1, col=2)
    fig.update_xaxes(title_text="Time", row=2, col=1)
    fig.update_yaxes(title_text="Population", row=2, col=1)
    fig.update_xaxes(title_text="Organelle", row=2, col=2)
    fig.update_yaxes(title_text="Count", row=2, col=2)

    fig.update_layout(height=800, width=1200, title_text="Advanced Cell Evolution Simulation")

    return fig

def format_number(num):
    if num >= 1_000_000:
        return f"{num/1_000_000:.1f}M"
    elif num >= 1_000:
        return f"{num/1_000:.1f}K"
    else:
        return str(num)

def update_chart():
    global fig  # Assuming fig is a global variable
    
    # Clear existing traces
    fig.data = []
    
    # Cell positions
    cell_types = [cell.cell_type for cell in st.session_state.env.cells]
    x_positions = [cell.x for cell in st.session_state.env.cells]
    y_positions = [cell.y for cell in st.session_state.env.cells]
    
    fig.add_trace(go.Scatter(x=x_positions, y=y_positions, mode='markers', 
                             marker=dict(color=[colors[ct] for ct in cell_types]), 
                             text=cell_types, hoverinfo='text'), row=1, col=1)

    # Population history
    for cell_type, counts in st.session_state.env.population_history.items():
        fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, 
                                 line=dict(color=colors[cell_type])), row=1, col=2)

    # Population by cell type
    for cell_type, counts in st.session_state.env.population_history.items():
        fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, 
                                 line=dict(color=colors[cell_type])), row=2, col=1)

    # Organelle distribution
    organelle_counts = {"nucleus": 0, "mitochondria": 0, "chloroplast": 0, 
                        "endoplasmic_reticulum": 0, "golgi_apparatus": 0}
    for cell in st.session_state.env.cells:
        for organelle in cell.organelles:
            organelle_counts[organelle] += 1
    
    fig.add_trace(go.Bar(x=list(organelle_counts.keys()), y=list(organelle_counts.values()), 
                         name="Organelles"), row=2, col=2)

    # Update axis labels and layout
    fig.update_xaxes(title_text="X", row=1, col=1)
    fig.update_yaxes(title_text="Y", row=1, col=1)
    fig.update_xaxes(title_text="Time", row=1, col=2)
    fig.update_yaxes(title_text="Population", row=1, col=2)
    fig.update_xaxes(title_text="Time", row=2, col=1)
    fig.update_yaxes(title_text="Population", row=2, col=1)
    fig.update_xaxes(title_text="Organelle", row=2, col=2)
    fig.update_yaxes(title_text="Count", row=2, col=2)

    fig.update_layout(height=800, width=1200, title_text="Advanced Cell Evolution Simulation")

    # Update the chart placeholder
    chart_placeholder.plotly_chart(fig)

# Sidebar for controls and live statistics
st.sidebar.header("Simulation Controls")
initial_cells = st.sidebar.slider("Initial number of cells", 10, 500, 200)
update_interval = st.sidebar.slider("Update interval (seconds)", 0.01, 1.0, 0.05)

st.sidebar.header("Environmental Effects")
radiation = st.sidebar.checkbox("Radiation")
predation = st.sidebar.checkbox("Predation")
symbiosis = st.sidebar.checkbox("Symbiosis")

effects = {
    "radiation": radiation,
    "predation": predation,
    "symbiosis": symbiosis
}

# Live statistics placeholders
st.sidebar.header("Live Statistics")
total_cells_text = st.sidebar.empty()
cell_type_breakdown = st.sidebar.empty()
dominant_type_text = st.sidebar.empty()
avg_energy_text = st.sidebar.empty()
total_merges_text = st.sidebar.empty()

# Event log
st.sidebar.header("Event Log")
event_log = deque(maxlen=10)  # Keep the last 10 events
event_log_text = st.sidebar.empty()

# Create placeholders for the chart
chart_placeholder = st.empty()



if 'running' not in st.session_state:
    st.session_state.running = False
if 'total_merges' not in st.session_state:
    st.session_state.total_merges = 0
if 'env' not in st.session_state:
    st.session_state.env = None
if 'fig' not in st.session_state:
    st.session_state.fig = None

def start_simulation():
    st.session_state.running = True
    if st.session_state.env is None:
        st.session_state.env = Environment(100, 100, effects)
        for _ in range(initial_cells):
            cell = Cell(random.uniform(0, st.session_state.env.width), random.uniform(0, st.session_state.env.height))
            st.session_state.env.add_cell(cell)
        st.session_state.fig = setup_figure(st.session_state.env)

def stop_simulation():
    st.session_state.running = False

# Create two columns for start and stop buttons
col1, col2 = st.columns(2)

with col1:
    start_button = st.button("Start Simulation", on_click=start_simulation)

with col2:
    stop_button = st.button("Stop Simulation", on_click=stop_simulation)

# Main simulation loop
simulation_container = st.empty()

if st.session_state.running and st.session_state.env is not None:
    with simulation_container.container():
        for _ in range(4):  # Update 4 times per frame to increase simulation speed
            initial_cell_count = len(st.session_state.env.cells)
            st.session_state.env.update()
            final_cell_count = len(st.session_state.env.cells)
            
            # Check for merges
            if final_cell_count < initial_cell_count:
                merges = initial_cell_count - final_cell_count
                st.session_state.total_merges += merges
                event_log.appendleft(f"Time {st.session_state.env.time}: {merges} cell merges occurred")
        
        update_chart()
        update_statistics()
    
    time.sleep(update_interval)
    st.experimental_rerun()

if not st.session_state.running:
    st.write("Simulation stopped. Click 'Start Simulation' to run again.")