Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,957 Bytes
827d113 220ffe7 827d113 220ffe7 827d113 05e7c02 827d113 05e7c02 220ffe7 827d113 05e7c02 220ffe7 05e7c02 220ffe7 05e7c02 7117c2e 05e7c02 a3a6f96 05e7c02 7117c2e 05e7c02 827d113 05e7c02 220ffe7 05e7c02 827d113 05e7c02 220ffe7 827d113 05e7c02 220ffe7 05e7c02 220ffe7 05e7c02 827d113 23daa6d 05e7c02 220ffe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DESCRIPTION = "PonyDiffusion V6 XL"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
MODEL = os.getenv(
"MODEL",
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load pipeline function remains unchanged
def parse_json_parameters(json_str):
try:
params = json.loads(json_str)
return params
except json.JSONDecodeError:
return None
def apply_json_parameters(json_str):
params = parse_json_parameters(json_str)
if params:
return (
params.get("prompt", ""),
params.get("negative_prompt", ""),
params.get("seed", 0),
params.get("width", 1024),
params.get("height", 1024),
params.get("guidance_scale", 7.0),
params.get("num_inference_steps", 30),
params.get("sampler", "DPM++ 2M SDE Karras"),
params.get("aspect_ratio", "1024 x 1024"),
params.get("use_upscaler", False),
params.get("upscaler_strength", 0.55),
params.get("upscale_by", 1.5),
)
return [gr.update()] * 12
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 7.0,
num_inference_steps: int = 30,
sampler: str = "DPM++ 2M SDE Karras",
aspect_ratio_selector: str = "1024 x 1024",
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
progress=gr.Progress(track_tqdm=True),
) -> Image:
# Existing generate function code...
# Update history after generation
history = gr.get_state("history") or []
history.insert(0, {"prompt": prompt, "image": images[0], "metadata": metadata})
gr.set_state("history", history[:10]) # Keep only the last 10 entries
return images, metadata, gr.update(choices=[h["prompt"] for h in history])
def get_random_prompt():
return random.choice(config.examples)
with gr.Blocks(css="style.css") as demo:
# Existing UI elements...
with gr.Accordion(label="JSON Parameters", open=False):
json_input = gr.TextArea(label="Input JSON parameters")
apply_json_button = gr.Button("Apply JSON Parameters")
with gr.Row():
clear_button = gr.Button("Clear All")
random_prompt_button = gr.Button("Random Prompt")
history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True)
# Connect components
apply_json_button.click(
fn=apply_json_parameters,
inputs=json_input,
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
guidance_scale, num_inference_steps, sampler,
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
)
clear_button.click(
fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0),
gr.update(value=1024), gr.update(value=1024),
gr.update(value=7.0), gr.update(value=30),
gr.update(value="DPM++ 2M SDE Karras"),
gr.update(value="1024 x 1024"), gr.update(value=False),
gr.update(value=0.55), gr.update(value=1.5)),
inputs=[],
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
guidance_scale, num_inference_steps, sampler,
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
)
random_prompt_button.click(
fn=get_random_prompt,
inputs=[],
outputs=prompt
)
history_dropdown.change(
fn=lambda x: gr.update(value=x),
inputs=history_dropdown,
outputs=prompt
)
# Existing event handlers...
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB) |