Sergidev's picture
app v2
05e7c02 verified
raw
history blame
4.96 kB
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DESCRIPTION = "PonyDiffusion V6 XL"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
MODEL = os.getenv(
"MODEL",
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load pipeline function remains unchanged
def parse_json_parameters(json_str):
try:
params = json.loads(json_str)
return params
except json.JSONDecodeError:
return None
def apply_json_parameters(json_str):
params = parse_json_parameters(json_str)
if params:
return (
params.get("prompt", ""),
params.get("negative_prompt", ""),
params.get("seed", 0),
params.get("width", 1024),
params.get("height", 1024),
params.get("guidance_scale", 7.0),
params.get("num_inference_steps", 30),
params.get("sampler", "DPM++ 2M SDE Karras"),
params.get("aspect_ratio", "1024 x 1024"),
params.get("use_upscaler", False),
params.get("upscaler_strength", 0.55),
params.get("upscale_by", 1.5),
)
return [gr.update()] * 12
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 7.0,
num_inference_steps: int = 30,
sampler: str = "DPM++ 2M SDE Karras",
aspect_ratio_selector: str = "1024 x 1024",
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
progress=gr.Progress(track_tqdm=True),
) -> Image:
# Existing generate function code...
# Update history after generation
history = gr.get_state("history") or []
history.insert(0, {"prompt": prompt, "image": images[0], "metadata": metadata})
gr.set_state("history", history[:10]) # Keep only the last 10 entries
return images, metadata, gr.update(choices=[h["prompt"] for h in history])
def get_random_prompt():
return random.choice(config.examples)
with gr.Blocks(css="style.css") as demo:
# Existing UI elements...
with gr.Accordion(label="JSON Parameters", open=False):
json_input = gr.TextArea(label="Input JSON parameters")
apply_json_button = gr.Button("Apply JSON Parameters")
with gr.Row():
clear_button = gr.Button("Clear All")
random_prompt_button = gr.Button("Random Prompt")
history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True)
# Connect components
apply_json_button.click(
fn=apply_json_parameters,
inputs=json_input,
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
guidance_scale, num_inference_steps, sampler,
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
)
clear_button.click(
fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0),
gr.update(value=1024), gr.update(value=1024),
gr.update(value=7.0), gr.update(value=30),
gr.update(value="DPM++ 2M SDE Karras"),
gr.update(value="1024 x 1024"), gr.update(value=False),
gr.update(value=0.55), gr.update(value=1.5)),
inputs=[],
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
guidance_scale, num_inference_steps, sampler,
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
)
random_prompt_button.click(
fn=get_random_prompt,
inputs=[],
outputs=prompt
)
history_dropdown.change(
fn=lambda x: gr.update(value=x),
inputs=history_dropdown,
outputs=prompt
)
# Existing event handlers...
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)