Shakir60's picture
Update app.py
18cc344 verified
raw
history blame
9.96 kB
import streamlit as st
import torch
from PIL import Image
import numpy as np
from transformers import ViTForImageClassification, ViTImageProcessor
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import logging
import faiss
from typing import List, Dict
from datetime import datetime
from groq import Groq
import os
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class RAGSystem:
def __init__(self):
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.knowledge_base = self.load_knowledge_base()
self.vector_store = self.create_vector_store()
self.query_history = []
def load_knowledge_base(self) -> List[Dict]:
"""Load and preprocess knowledge base"""
kb = {
"spalling": [
{
"severity": "Critical",
"description": "Severe concrete spalling with exposed reinforcement",
"repair_method": "Remove deteriorated concrete, clean reinforcement",
"estimated_cost": "Very High ($15,000+)",
"immediate_action": "Evacuate area, install support",
"prevention": "Regular inspections, waterproofing"
}
],
"structural_cracks": [
{
"severity": "High",
"description": "Active structural cracks >5mm width",
"repair_method": "Structural analysis, epoxy injection",
"estimated_cost": "High ($10,000-$20,000)",
"immediate_action": "Install crack monitors",
"prevention": "Regular monitoring, load management"
}
],
"surface_deterioration": [
{
"severity": "Medium",
"description": "Surface scaling and deterioration",
"repair_method": "Surface preparation, patch repair",
"estimated_cost": "Medium ($5,000-$10,000)",
"immediate_action": "Document extent, plan repairs",
"prevention": "Surface sealers, proper drainage"
}
]
}
documents = []
for category, items in kb.items():
for item in items:
doc_text = f"Category: {category}\n"
for key, value in item.items():
doc_text += f"{key}: {value}\n"
documents.append({"text": doc_text, "metadata": {"category": category}})
return documents
def create_vector_store(self):
"""Create FAISS vector store"""
texts = [doc["text"] for doc in self.knowledge_base]
embeddings = self.embedding_model.encode(texts)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype('float32'))
return index
def get_relevant_context(self, query: str, k: int = 2) -> str:
"""Retrieve relevant context based on query"""
try:
query_embedding = self.embedding_model.encode([query])
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
self.query_history.append({
"timestamp": datetime.now().isoformat(),
"query": query
})
return context
except Exception as e:
logger.error(f"Error retrieving context: {e}")
return ""
class ImageAnalyzer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
try:
self.model = ViTForImageClassification.from_pretrained(
"google/vit-base-patch16-224",
num_labels=len(self.defect_classes)
).to(self.device)
self.processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
except Exception as e:
logger.error(f"Model initialization error: {e}")
self.model = None
self.processor = None
def analyze_image(self, image):
try:
# Ensure image is RGB
if image.mode != 'RGB':
image = image.convert('RGB')
# Process image
inputs = self.processor(images=image, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Get predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Get probabilities
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
return {self.defect_classes[i]: float(probs[i]) for i in range(len(self.defect_classes))}
except Exception as e:
logger.error(f"Analysis error: {e}")
return None
def get_groq_response(query: str, context: str) -> str:
"""Get response from Groq LLM"""
try:
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
prompt = f"""Based on the following context about construction defects, answer the question.
Context: {context}
Question: {query}
Provide a detailed answer based on the given context."""
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a construction defect analysis expert."
},
{
"role": "user",
"content": prompt
}
],
model="llama2-70b-4096",
temperature=0.7,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Groq API error: {e}")
return f"Error: Unable to get response from AI model. Please check your API key and try again."
def main():
st.set_page_config(
page_title="Construction Defect Analyzer",
page_icon="🏗️",
layout="wide"
)
st.title("🏗️ Construction Defect Analyzer")
# Initialize systems
if 'analyzer' not in st.session_state:
st.session_state.analyzer = ImageAnalyzer()
if 'rag_system' not in st.session_state:
st.session_state.rag_system = RAGSystem()
# Create two columns
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("Image Analysis")
uploaded_file = st.file_uploader("Upload a construction image for analysis", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
# Read and display image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Analyze image
with st.spinner('Analyzing image...'):
results = st.session_state.analyzer.analyze_image(image)
if results:
st.success('Analysis complete!')
# Display results
st.subheader("Detected Defects")
# Create bar chart
fig, ax = plt.subplots(figsize=(8, 4))
defects = list(results.keys())
probs = list(results.values())
ax.barh(defects, probs)
ax.set_xlim(0, 1)
plt.tight_layout()
st.pyplot(fig)
# Get most likely defect
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
st.info(f"Most likely defect: {most_likely_defect}")
else:
st.error("Analysis failed. Please try again.")
except Exception as e:
st.error(f"Error: {str(e)}")
logger.error(f"Process error: {e}")
with col2:
st.subheader("Ask About Defects")
user_query = st.text_input(
"Ask a question about the defects or repairs:",
help="Example: What are the repair methods for spalling?"
)
if user_query:
with st.spinner('Getting answer...'):
# Get context from RAG system
context = st.session_state.rag_system.get_relevant_context(user_query)
# Get response from Groq
response = get_groq_response(user_query, context)
# Display response
st.write("Answer:")
st.write(response)
# Option to view context
with st.expander("View retrieved information"):
st.text(context)
# Sidebar for information
with st.sidebar:
st.header("About")
st.write("""
This tool helps analyze construction defects in images and provides
information about repair methods and best practices.
Features:
- Image analysis for defect detection
- Information lookup for repair methods
- Expert AI responses to your questions
""")
# Display API status
if os.getenv("GROQ_API_KEY"):
st.success("Groq API: Connected")
else:
st.error("Groq API: Not configured")
if __name__ == "__main__":
main()