Delete utils_tools.py
Browse files- utils_tools.py +0 -442
utils_tools.py
DELETED
@@ -1,442 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from PIL import Image
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import cv2
|
5 |
-
import torch
|
6 |
-
import os
|
7 |
-
import sys
|
8 |
-
import clip
|
9 |
-
|
10 |
-
|
11 |
-
def convert_box_xywh_to_xyxy(box):
|
12 |
-
if len(box) == 4:
|
13 |
-
return [box[0], box[1], box[0] + box[2], box[1] + box[3]]
|
14 |
-
else:
|
15 |
-
result = []
|
16 |
-
for b in box:
|
17 |
-
b = convert_box_xywh_to_xyxy(b)
|
18 |
-
result.append(b)
|
19 |
-
return result
|
20 |
-
|
21 |
-
|
22 |
-
def segment_image(image, bbox):
|
23 |
-
image_array = np.array(image)
|
24 |
-
segmented_image_array = np.zeros_like(image_array)
|
25 |
-
x1, y1, x2, y2 = bbox
|
26 |
-
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
|
27 |
-
segmented_image = Image.fromarray(segmented_image_array)
|
28 |
-
black_image = Image.new("RGB", image.size, (255, 255, 255))
|
29 |
-
# transparency_mask = np.zeros_like((), dtype=np.uint8)
|
30 |
-
transparency_mask = np.zeros(
|
31 |
-
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
|
32 |
-
)
|
33 |
-
transparency_mask[y1:y2, x1:x2] = 255
|
34 |
-
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
|
35 |
-
black_image.paste(segmented_image, mask=transparency_mask_image)
|
36 |
-
return black_image
|
37 |
-
|
38 |
-
|
39 |
-
def format_results(result, filter=0):
|
40 |
-
annotations = []
|
41 |
-
n = len(result.masks.data)
|
42 |
-
for i in range(n):
|
43 |
-
annotation = {}
|
44 |
-
mask = result.masks.data[i] == 1.0
|
45 |
-
|
46 |
-
if torch.sum(mask) < filter:
|
47 |
-
continue
|
48 |
-
annotation["id"] = i
|
49 |
-
annotation["segmentation"] = mask.cpu().numpy()
|
50 |
-
annotation["bbox"] = result.boxes.data[i]
|
51 |
-
annotation["score"] = result.boxes.conf[i]
|
52 |
-
annotation["area"] = annotation["segmentation"].sum()
|
53 |
-
annotations.append(annotation)
|
54 |
-
return annotations
|
55 |
-
|
56 |
-
|
57 |
-
def filter_masks(annotations): # filter the overlap mask
|
58 |
-
annotations.sort(key=lambda x: x["area"], reverse=True)
|
59 |
-
to_remove = set()
|
60 |
-
for i in range(0, len(annotations)):
|
61 |
-
a = annotations[i]
|
62 |
-
for j in range(i + 1, len(annotations)):
|
63 |
-
b = annotations[j]
|
64 |
-
if i != j and j not in to_remove:
|
65 |
-
# check if
|
66 |
-
if b["area"] < a["area"]:
|
67 |
-
if (a["segmentation"] & b["segmentation"]).sum() / b[
|
68 |
-
"segmentation"
|
69 |
-
].sum() > 0.8:
|
70 |
-
to_remove.add(j)
|
71 |
-
|
72 |
-
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
|
73 |
-
|
74 |
-
|
75 |
-
def get_bbox_from_mask(mask):
|
76 |
-
mask = mask.astype(np.uint8)
|
77 |
-
contours, hierarchy = cv2.findContours(
|
78 |
-
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
79 |
-
)
|
80 |
-
x1, y1, w, h = cv2.boundingRect(contours[0])
|
81 |
-
x2, y2 = x1 + w, y1 + h
|
82 |
-
if len(contours) > 1:
|
83 |
-
for b in contours:
|
84 |
-
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
|
85 |
-
# 将多个bbox合并成一个
|
86 |
-
x1 = min(x1, x_t)
|
87 |
-
y1 = min(y1, y_t)
|
88 |
-
x2 = max(x2, x_t + w_t)
|
89 |
-
y2 = max(y2, y_t + h_t)
|
90 |
-
h = y2 - y1
|
91 |
-
w = x2 - x1
|
92 |
-
return [x1, y1, x2, y2]
|
93 |
-
|
94 |
-
|
95 |
-
def fast_process(
|
96 |
-
annotations, args, mask_random_color, bbox=None, points=None, edges=False
|
97 |
-
):
|
98 |
-
if isinstance(annotations[0], dict):
|
99 |
-
annotations = [annotation["segmentation"] for annotation in annotations]
|
100 |
-
result_name = os.path.basename(args.img_path)
|
101 |
-
image = cv2.imread(args.img_path)
|
102 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
103 |
-
original_h = image.shape[0]
|
104 |
-
original_w = image.shape[1]
|
105 |
-
if sys.platform == "darwin":
|
106 |
-
plt.switch_backend("TkAgg")
|
107 |
-
plt.figure(figsize=(original_w / 100, original_h / 100))
|
108 |
-
# Add subplot with no margin.
|
109 |
-
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
110 |
-
plt.margins(0, 0)
|
111 |
-
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
112 |
-
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
113 |
-
plt.imshow(image)
|
114 |
-
if args.better_quality == True:
|
115 |
-
if isinstance(annotations[0], torch.Tensor):
|
116 |
-
annotations = np.array(annotations.cpu())
|
117 |
-
for i, mask in enumerate(annotations):
|
118 |
-
mask = cv2.morphologyEx(
|
119 |
-
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
|
120 |
-
)
|
121 |
-
annotations[i] = cv2.morphologyEx(
|
122 |
-
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
|
123 |
-
)
|
124 |
-
if args.device == "cpu":
|
125 |
-
annotations = np.array(annotations)
|
126 |
-
fast_show_mask(
|
127 |
-
annotations,
|
128 |
-
plt.gca(),
|
129 |
-
random_color=mask_random_color,
|
130 |
-
bbox=bbox,
|
131 |
-
points=points,
|
132 |
-
point_label=args.point_label,
|
133 |
-
retinamask=args.retina,
|
134 |
-
target_height=original_h,
|
135 |
-
target_width=original_w,
|
136 |
-
)
|
137 |
-
else:
|
138 |
-
if isinstance(annotations[0], np.ndarray):
|
139 |
-
annotations = torch.from_numpy(annotations)
|
140 |
-
fast_show_mask_gpu(
|
141 |
-
annotations,
|
142 |
-
plt.gca(),
|
143 |
-
random_color=args.randomcolor,
|
144 |
-
bbox=bbox,
|
145 |
-
points=points,
|
146 |
-
point_label=args.point_label,
|
147 |
-
retinamask=args.retina,
|
148 |
-
target_height=original_h,
|
149 |
-
target_width=original_w,
|
150 |
-
)
|
151 |
-
if isinstance(annotations, torch.Tensor):
|
152 |
-
annotations = annotations.cpu().numpy()
|
153 |
-
if args.withContours == True:
|
154 |
-
contour_all = []
|
155 |
-
temp = np.zeros((original_h, original_w, 1))
|
156 |
-
for i, mask in enumerate(annotations):
|
157 |
-
if type(mask) == dict:
|
158 |
-
mask = mask["segmentation"]
|
159 |
-
annotation = mask.astype(np.uint8)
|
160 |
-
if args.retina == False:
|
161 |
-
annotation = cv2.resize(
|
162 |
-
annotation,
|
163 |
-
(original_w, original_h),
|
164 |
-
interpolation=cv2.INTER_NEAREST,
|
165 |
-
)
|
166 |
-
contours, hierarchy = cv2.findContours(
|
167 |
-
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
168 |
-
)
|
169 |
-
for contour in contours:
|
170 |
-
contour_all.append(contour)
|
171 |
-
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
172 |
-
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
173 |
-
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
174 |
-
plt.imshow(contour_mask)
|
175 |
-
|
176 |
-
save_path = args.output
|
177 |
-
if not os.path.exists(save_path):
|
178 |
-
os.makedirs(save_path)
|
179 |
-
plt.axis("off")
|
180 |
-
fig = plt.gcf()
|
181 |
-
plt.draw()
|
182 |
-
|
183 |
-
try:
|
184 |
-
buf = fig.canvas.tostring_rgb()
|
185 |
-
except AttributeError:
|
186 |
-
fig.canvas.draw()
|
187 |
-
buf = fig.canvas.tostring_rgb()
|
188 |
-
|
189 |
-
cols, rows = fig.canvas.get_width_height()
|
190 |
-
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
|
191 |
-
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
192 |
-
|
193 |
-
|
194 |
-
# CPU post process
|
195 |
-
def fast_show_mask(
|
196 |
-
annotation,
|
197 |
-
ax,
|
198 |
-
random_color=False,
|
199 |
-
bbox=None,
|
200 |
-
points=None,
|
201 |
-
point_label=None,
|
202 |
-
retinamask=True,
|
203 |
-
target_height=960,
|
204 |
-
target_width=960,
|
205 |
-
):
|
206 |
-
msak_sum = annotation.shape[0]
|
207 |
-
height = annotation.shape[1]
|
208 |
-
weight = annotation.shape[2]
|
209 |
-
# 将annotation 按照面积 排序
|
210 |
-
areas = np.sum(annotation, axis=(1, 2))
|
211 |
-
sorted_indices = np.argsort(areas)
|
212 |
-
annotation = annotation[sorted_indices]
|
213 |
-
|
214 |
-
index = (annotation != 0).argmax(axis=0)
|
215 |
-
if random_color == True:
|
216 |
-
color = np.random.random((msak_sum, 1, 1, 3))
|
217 |
-
else:
|
218 |
-
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
|
219 |
-
[30 / 255, 144 / 255, 255 / 255]
|
220 |
-
)
|
221 |
-
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
|
222 |
-
visual = np.concatenate([color, transparency], axis=-1)
|
223 |
-
mask_image = np.expand_dims(annotation, -1) * visual
|
224 |
-
|
225 |
-
show = np.zeros((height, weight, 4))
|
226 |
-
h_indices, w_indices = np.meshgrid(
|
227 |
-
np.arange(height), np.arange(weight), indexing="ij"
|
228 |
-
)
|
229 |
-
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
230 |
-
# 使用向量化索引更新show的值
|
231 |
-
show[h_indices, w_indices, :] = mask_image[indices]
|
232 |
-
if bbox is not None:
|
233 |
-
x1, y1, x2, y2 = bbox
|
234 |
-
ax.add_patch(
|
235 |
-
plt.Rectangle(
|
236 |
-
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
237 |
-
)
|
238 |
-
)
|
239 |
-
# draw point
|
240 |
-
if points is not None:
|
241 |
-
plt.scatter(
|
242 |
-
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
243 |
-
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
244 |
-
s=20,
|
245 |
-
c="y",
|
246 |
-
)
|
247 |
-
plt.scatter(
|
248 |
-
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
249 |
-
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
250 |
-
s=20,
|
251 |
-
c="m",
|
252 |
-
)
|
253 |
-
|
254 |
-
if retinamask == False:
|
255 |
-
show = cv2.resize(
|
256 |
-
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
257 |
-
)
|
258 |
-
ax.imshow(show)
|
259 |
-
|
260 |
-
|
261 |
-
def fast_show_mask_gpu(
|
262 |
-
annotation,
|
263 |
-
ax,
|
264 |
-
random_color=False,
|
265 |
-
bbox=None,
|
266 |
-
points=None,
|
267 |
-
point_label=None,
|
268 |
-
retinamask=True,
|
269 |
-
target_height=960,
|
270 |
-
target_width=960,
|
271 |
-
):
|
272 |
-
msak_sum = annotation.shape[0]
|
273 |
-
height = annotation.shape[1]
|
274 |
-
weight = annotation.shape[2]
|
275 |
-
areas = torch.sum(annotation, dim=(1, 2))
|
276 |
-
sorted_indices = torch.argsort(areas, descending=False)
|
277 |
-
annotation = annotation[sorted_indices]
|
278 |
-
# 找每个位置第一个非零值下标
|
279 |
-
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
280 |
-
if random_color == True:
|
281 |
-
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
|
282 |
-
else:
|
283 |
-
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
|
284 |
-
[30 / 255, 144 / 255, 255 / 255]
|
285 |
-
).to(annotation.device)
|
286 |
-
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
|
287 |
-
visual = torch.cat([color, transparency], dim=-1)
|
288 |
-
mask_image = torch.unsqueeze(annotation, -1) * visual
|
289 |
-
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
290 |
-
show = torch.zeros((height, weight, 4)).to(annotation.device)
|
291 |
-
h_indices, w_indices = torch.meshgrid(
|
292 |
-
torch.arange(height), torch.arange(weight), indexing="ij"
|
293 |
-
)
|
294 |
-
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
295 |
-
# 使用向量化索引更新show的值
|
296 |
-
show[h_indices, w_indices, :] = mask_image[indices]
|
297 |
-
show_cpu = show.cpu().numpy()
|
298 |
-
if bbox is not None:
|
299 |
-
x1, y1, x2, y2 = bbox
|
300 |
-
ax.add_patch(
|
301 |
-
plt.Rectangle(
|
302 |
-
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
303 |
-
)
|
304 |
-
)
|
305 |
-
# draw point
|
306 |
-
if points is not None:
|
307 |
-
plt.scatter(
|
308 |
-
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
309 |
-
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
310 |
-
s=20,
|
311 |
-
c="y",
|
312 |
-
)
|
313 |
-
plt.scatter(
|
314 |
-
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
315 |
-
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
316 |
-
s=20,
|
317 |
-
c="m",
|
318 |
-
)
|
319 |
-
if retinamask == False:
|
320 |
-
show_cpu = cv2.resize(
|
321 |
-
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
322 |
-
)
|
323 |
-
ax.imshow(show_cpu)
|
324 |
-
|
325 |
-
|
326 |
-
# clip
|
327 |
-
@torch.no_grad()
|
328 |
-
def retriev(
|
329 |
-
model, preprocess, elements: [Image.Image], search_text: str, device
|
330 |
-
):
|
331 |
-
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
332 |
-
tokenized_text = clip.tokenize([search_text]).to(device)
|
333 |
-
stacked_images = torch.stack(preprocessed_images)
|
334 |
-
image_features = model.encode_image(stacked_images)
|
335 |
-
text_features = model.encode_text(tokenized_text)
|
336 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
337 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
338 |
-
probs = 100.0 * image_features @ text_features.T
|
339 |
-
return probs[:, 0].softmax(dim=0)
|
340 |
-
|
341 |
-
|
342 |
-
def crop_image(annotations, image_like):
|
343 |
-
if isinstance(image_like, str):
|
344 |
-
image = Image.open(image_like)
|
345 |
-
else:
|
346 |
-
image = image_like
|
347 |
-
ori_w, ori_h = image.size
|
348 |
-
mask_h, mask_w = annotations[0]["segmentation"].shape
|
349 |
-
if ori_w != mask_w or ori_h != mask_h:
|
350 |
-
image = image.resize((mask_w, mask_h))
|
351 |
-
cropped_boxes = []
|
352 |
-
cropped_images = []
|
353 |
-
not_crop = []
|
354 |
-
origin_id = []
|
355 |
-
for _, mask in enumerate(annotations):
|
356 |
-
if np.sum(mask["segmentation"]) <= 100:
|
357 |
-
continue
|
358 |
-
origin_id.append(_)
|
359 |
-
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
|
360 |
-
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
|
361 |
-
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
|
362 |
-
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
363 |
-
return cropped_boxes, cropped_images, not_crop, origin_id, annotations
|
364 |
-
|
365 |
-
|
366 |
-
def box_prompt(masks, bbox, target_height, target_width):
|
367 |
-
h = masks.shape[1]
|
368 |
-
w = masks.shape[2]
|
369 |
-
if h != target_height or w != target_width:
|
370 |
-
bbox = [
|
371 |
-
int(bbox[0] * w / target_width),
|
372 |
-
int(bbox[1] * h / target_height),
|
373 |
-
int(bbox[2] * w / target_width),
|
374 |
-
int(bbox[3] * h / target_height),
|
375 |
-
]
|
376 |
-
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
|
377 |
-
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
|
378 |
-
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
|
379 |
-
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
|
380 |
-
|
381 |
-
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
|
382 |
-
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
383 |
-
|
384 |
-
masks_area = torch.sum(masks[:, bbox[1]: bbox[3], bbox[0]: bbox[2]], dim=(1, 2))
|
385 |
-
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
386 |
-
|
387 |
-
union = bbox_area + orig_masks_area - masks_area
|
388 |
-
IoUs = masks_area / union
|
389 |
-
max_iou_index = torch.argmax(IoUs)
|
390 |
-
|
391 |
-
return masks[max_iou_index].cpu().numpy(), max_iou_index
|
392 |
-
|
393 |
-
|
394 |
-
def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理
|
395 |
-
h = masks[0]["segmentation"].shape[0]
|
396 |
-
w = masks[0]["segmentation"].shape[1]
|
397 |
-
if h != target_height or w != target_width:
|
398 |
-
points = [
|
399 |
-
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
|
400 |
-
for point in points
|
401 |
-
]
|
402 |
-
onemask = np.zeros((h, w))
|
403 |
-
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
|
404 |
-
for i, annotation in enumerate(masks):
|
405 |
-
if type(annotation) == dict:
|
406 |
-
mask = annotation['segmentation']
|
407 |
-
else:
|
408 |
-
mask = annotation
|
409 |
-
for i, point in enumerate(points):
|
410 |
-
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
|
411 |
-
onemask[mask] = 1
|
412 |
-
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
|
413 |
-
onemask[mask] = 0
|
414 |
-
onemask = onemask >= 1
|
415 |
-
return onemask, 0
|
416 |
-
|
417 |
-
|
418 |
-
def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9):
|
419 |
-
cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image(
|
420 |
-
annotations, img_path
|
421 |
-
)
|
422 |
-
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
|
423 |
-
scores = retriev(
|
424 |
-
clip_model, preprocess, cropped_boxes, text, device=device
|
425 |
-
)
|
426 |
-
max_idx = scores.argsort()
|
427 |
-
max_idx = max_idx[-1]
|
428 |
-
max_idx = origin_id[int(max_idx)]
|
429 |
-
|
430 |
-
# find the biggest mask which contains the mask with max score
|
431 |
-
if wider:
|
432 |
-
mask0 = annotations_[max_idx]["segmentation"]
|
433 |
-
area0 = np.sum(mask0)
|
434 |
-
areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id]
|
435 |
-
areas = sorted(areas, key=lambda area: area[1], reverse=True)
|
436 |
-
indices = [area[0] for area in areas]
|
437 |
-
for index in indices:
|
438 |
-
if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold:
|
439 |
-
max_idx = index
|
440 |
-
break
|
441 |
-
|
442 |
-
return annotations_[max_idx]["segmentation"], max_idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|